Skip to main content

Robot Convergence via Center-of-Gravity Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3104))

Abstract

Consider a group of N robots aiming to converge towards a single point. The robots cannot communicate, and their only input is obtained by visual sensors. A natural algorithm for the problem is based on requiring each robot to move towards the robots’ center of gravity. The paper proves the correctness of the center-of-gravity algorithm in the semi-synchronous model for any number of robots, and its correctness in the fully asynchronous model for two robots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parker, L., Touzet, C.: Multi-robot learning in a cooperative observation task. Distributed Autonomous Robotic Systems 4, 391–401 (2000)

    Google Scholar 

  2. Jung, D., Cheng, G., Zelinsky, A.: Experiments in realising cooperation between autonomous mobile robots. In: Proc. Int. Symp. on Experimental Robotics (1997)

    Google Scholar 

  3. Parker, L., Touzet, C., Fernandez, F.: Techniques for learning in multi-robot teams. In: Balch, T., Parker, L. (eds.) Robot Teams: From Diversity to Polymorphism, A. K. Peters, Wellesley (2001)

    Google Scholar 

  4. Kawauchi, Y., Inaba, M., Fukuda, T.: A principle of decision making of cellular robotic system (CEBOT). In: Proc. IEEE Conf. on Robotics and Automation, pp. 833–838 (1993)

    Google Scholar 

  5. Beni, G., Hackwood, S.: Coherent swarm motion under distributed control. In: Proc. DARS 1992, pp. 39–52 (1992)

    Google Scholar 

  6. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proc. IEEE Conf. on Robotics and Automation, pp. 441–448 (1994)

    Google Scholar 

  7. Mataric, M.: Interaction and Intelligent Behavior. PhD thesis. MIT, Cambridge (1994)

    Google Scholar 

  8. Parker, L.: Designing control laws for cooperative agent teams. In: Proc. IEEE Conf. on Robotics and Automation, pp. 582–587 (1993)

    Google Scholar 

  9. Parker, L.: On the design of behavior-based multi-robot teams. J. of Advanced Robotics 10 (1996)

    Google Scholar 

  10. Balch, T., Arkin, R.: Behavior-based formation control for multi-robot teams. IEEE Trans. on Robotics and Automation 14 (1998)

    Google Scholar 

  11. Wagner, I., Bruckstein, A.: From ants to a(ge)nts. Annals of Mathematics and Artificial Intelligence, special issue on ant-robotics 31, 1–5 (1996)

    MathSciNet  Google Scholar 

  12. Cao, Y., Fukunaga, A., Kahng, A., Meng, F.: Cooperative mobile robots: Antecedents and directions. In: Proc. Int. Conf. of Intel. Robots and Sys., pp. 226–234 (1995)

    Google Scholar 

  13. Cao, Y., Fukunaga, A., Kahng, A.: Cooperative mobile robotics: Antecedents and directions. Autonomous Robots 4, 7–23 (1997)

    Article  Google Scholar 

  14. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proc. IEEE Symp. of Intelligent Control, pp. 453–460 (1995)

    Google Scholar 

  15. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Proc. 30th Int. Colloq. on Automata, Languages and Programming, pp. 1181–1196 (2003)

    Google Scholar 

  16. Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: Proc. 9th Int. Colloq. on Structural Information and Communication Complexity, pp. 57–72 (2002)

    Google Scholar 

  17. Prencipe, G.: CORDA: Distributed coordination of a set of atonomous mobile robots. In: Proc. 4th European Research Seminar on Advances in Distributed Systems, pp. 185–190 (2001)

    Google Scholar 

  18. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. Journal of Robotic Systems 13, 127–139 (1996)

    Article  MATH  Google Scholar 

  19. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots - formation and agreement problems. In: Proc. 3rd Colloq. on Structural Information and Communication Complexity, pp. 313–330 (1996)

    Google Scholar 

  20. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. on Computing 28, 1347–1363 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: The role of common knowledge in pattern formation by autonomous mobile robots. In: Proc. 10th Int. Symp. on Algorithms and Computation, pp. 93–102 (1999)

    Google Scholar 

  22. Prencipe, G.: Distributed Coordination of a Set of Atonomous Mobile Robots. PhD thesis, Universita Degli Studi Di Pisa (2002)

    Google Scholar 

  23. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of autonomous mobile robots with limited visibility. In: Proc. 18th Symp. on Theoretical Aspects of Computer Science, pp. 247–258 (2001)

    Google Scholar 

  24. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robotics and Automation 15, 818–828 (1999)

    Article  Google Scholar 

  25. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. Technical Report MSC 04-2, Weizmann Institue of Science, Rehovot, Israel (2004)

    Google Scholar 

  26. Suzuki, I., Yamashita, M.: Agreement on a common x-y coordinate system by a group of mobile robots. In: Proc. Dagstuhl Seminar on Modeling and Planning for Sensor-Based Intelligent Robots (1996)

    Google Scholar 

  27. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, R., Peleg, D. (2004). Robot Convergence via Center-of-Gravity Algorithms. In: Královic̆, R., Sýkora, O. (eds) Structural Information and Communication Complexity. SIROCCO 2004. Lecture Notes in Computer Science, vol 3104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27796-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27796-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22230-9

  • Online ISBN: 978-3-540-27796-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics