Skip to main content

Bacterial Proteins Involved in Antimicrobial Drug Resistance

  • Chapter
Perspectives in Antiinfective Therapy
  • 36 Accesses

Abstract

Antimicrobial drug resistance is a predictable response to the use of antibiotics. Among clinical isolates, this response most often involves the production of a drug-inactivating enzyme. Such enzymes have severely limited the clinical usefulness of many antimicrobial agents. Furthermore, their appearance and spread among microbial populations often reflect use and misuse of various antimicrobial agents. For example, the spread of chloramphenicol acetyltrans-ferase among strains of Salmonella typhi worldwide has caused many problems for the treatment of typhoid fever. Dissemination of this enzyme among Haemophilus influenzae and Bacteroides fragilis in the future could pose many new therapeutic problems. A variety of aminoglycoside inactivating enzymes affecting one or many members of this drug class have evolved. The prevalence of resistance to specific aminoglycosides varies widely from country to country and reflects not only aminoglycoside utilization patterns but also the prevalence of specific genes encoding the various inactivating enzymes. For β-lactam drugs, the β-lactamases are by far the most common mechanism of resistance encountered among clinical isolates. These enzymes comprise a diverse family of serine proteases and their dissemination maong both gram-positive and gram-negative bacteria has greatly influenced the efficacy of β-lactam drugs. All in all, an understanding and appreciation of these inactivating enzymes is essential for new drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kunin, C. M.: Antibiotic resistance — a world health problem we cannot ignore. Annals of Internal Medicine 1983, 99: 859–860.

    Article  PubMed  CAS  Google Scholar 

  2. Jackson, G. G.: Antibiotic policies, practices and pressures. Journal of Antimicrobial Chemotherapy 1979, 5: 1–4.

    Article  PubMed  CAS  Google Scholar 

  3. Levy, S. B.: Antibiotic resistance. Infection Control 1983, 4: 195–197.

    PubMed  CAS  Google Scholar 

  4. Finland, M.: Emergence of antibiotic resistance in hospitals, 1935–1975. Reviews of Infectious Diseases 1979, 1:4–21.

    Article  PubMed  CAS  Google Scholar 

  5. McGowan, J. E. Jr.: Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Reviews of Infectious Diseases 1983, 5: 1033–1048.

    Article  PubMed  Google Scholar 

  6. Cooke, D., Salter, A. J., Phillips, I.: Antimicrobial misuse, antibiotic policies and information services. Journal of Antimicrobial Chemotherapy 1980, 6: 435–443.

    Article  PubMed  CAS  Google Scholar 

  7. Holmberg, S. D., Soloman, S. L., Blake, P. A.: Health and economic impacts of antimicrobial resistance. Reviews of Infectious Diseases 1987, 9: 1065–1078.

    Article  PubMed  CAS  Google Scholar 

  8. O’Brien, T. F. and the Members of Task Force 2: Resistance of bacteria to antibacterial agents: report of Task Force 2. Reviews of Infectious Diseases 1987, Supplement 3, 9: S244-S260.

    Article  PubMed  Google Scholar 

  9. Antimicrobial Agents Committee: Report from the Antimicrobial Agents Committee. Journal of Infectious Diseases 1987, 156: 700–705.

    Article  Google Scholar 

  10. World Health Organization Scientific Working Group on Antibacterial Resistance: Control of antibiotic-resistant bacteria: memorandum from a WHO meeting. Bulletin of the World Health Organization 1983, 61: 423–433.

    Google Scholar 

  11. Shaw, W. V.: The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli. Journal of Biological Chemistry 1967, 242: 687–693.

    PubMed  CAS  Google Scholar 

  12. Smith, A. L., Burns, J. L.: Resistance to chloramphenicol and fusidic acid. In: Bryan, L. E. (ed.): Antimicrobial Drug Resistance. Academic Press, New York, 1984, p. 293–315.

    Google Scholar 

  13. Bryan, J. P., Rocha, H., Scheid, W. M.: Problems in salmonellosis: rationale for clinical trials with newer β-lactam agents and quinolones. Reviews of Infectious Disease 1986, 8: 189–207.

    Article  CAS  Google Scholar 

  14. Farrar, W. E.: Antibiotic resistance in developing countries. Journal of Infectious Diseases 1985, 152: 1103–1106.

    Article  PubMed  CAS  Google Scholar 

  15. Doern, G. V., Jorgensen, J. H., Thornsberry, C., Preston, D. A., Tubert, T., Redding, J. S., Maher, L. A.: National collaborative study of the prevalence of antimicrobial resistance among clinical isolates of Haemophilus influenzae. Antimicrobial Agents and Chemotherapy 1988, 32: 180–185.

    Article  PubMed  CAS  Google Scholar 

  16. Howard, A. J., Williams, H. M.: The prevalence of antibiotic resistance in Haemophilus influenzae in Wales. Journal of Antimicrobial Chemotherapy 1988, 21:251–260.

    Article  PubMed  CAS  Google Scholar 

  17. DeAlmeida, A. E. C. C., DeUzeda, M.: Susceptibility to five antimicrobial agents of strains of the Bacteroides fragilis group isolated in Brasil. Antimicrobial Agents and Chemotherapy. 1987, 617–618.

    Google Scholar 

  18. Tally, F. P., Chuchural, G. J. Jr., Jacobus, N. V., Gorbach, S. L., Aldridge, K., Cleary, T., Finegold, S. M., Hill, G., Iannini, P., O’Keefe, P., Pierson, C.: Nationwide study of the susceptibility of the Bacteroides fragilis group in the United States. Antimicrobial Agents and Chemotherapy 1985, 28: 675–677.

    Article  PubMed  CAS  Google Scholar 

  19. Bourgault, A.-M., Harding, G. K., Smith, J. A., Horsman, G. B., Marrie, T. J., Lamothe, F.: Survey of anaerobic susceptiblity patterns in Canada. Antimicrobial Agents and Chemotherapy 1986, 30: 798–801.

    Article  PubMed  CAS  Google Scholar 

  20. Campos, J., Garcia-Tornel, S., Gairi, J. M., Fabregues, I.: Multiply resistant Haemophilus influenzae type b causing meningitis: comparative clinical and laboratory study. Journal of Pediatrics 1986, 108: 879–902.

    Google Scholar 

  21. Davies, J. E.: Resistance to aminoglycosides: mechanisms and frequency. Reviews of Infectious Diseases 1983, Supplement 2, 5: S261-S267.

    Article  Google Scholar 

  22. Maes, P.: Evaluation of the resistance mechanisms of gentamicin-resistant gram-negative bacilli and their susceptibility to tobramycin, netilmicin and amikacin. Journal of Antimicrobial Chemotherapy 1985, 15: 283–289.

    Article  PubMed  CAS  Google Scholar 

  23. Shimizer, K., Kumada, T., Hsieh, W.-C., Chung, H.-Y., Chong, Y., Hare, R. S., Miller, G. H., Sabatelli, F. J., Howard, J.: Comparison of aminoglycoside resistance patterns in Japan, Formosa, and Korea, Chile, and the United States. Antimicrobial Agents and Chemotherapy 1985; 28: 282–288.

    Article  Google Scholar 

  24. Kettner, M., Navarová, J., Langsádl, L.: Aminoglycoside resistance patterns in clinical isolates of Enterobac-teriaceae from Czechoslovakia. Journal of Antimicrobial Chemotherapy 1987, 20: 383–387.

    Article  PubMed  CAS  Google Scholar 

  25. Levine, J. F., Maslow, M. J., Leibowitz, R. E., Pollock, A. A., Hanna, B. A., Schaefler, S., Simberkoff, M. S., Rahal, J. J. Jr.: Amikacin-resistant gram-negative bacilli: correlation of occurrence with amikacin use. Journal of Infectious Diseases 1985, 151: 295–300.

    Article  PubMed  CAS  Google Scholar 

  26. Nhieu, G. T. U., Goldstein, F. W., Pinto, M. E., Acar, J. F., Collatz, E.: Transfer of amikacin resistance by closely related plasmids in members of the family Enterobacteraceae isolated in Chile. Antimicrobial Agents and Chemotherapy 1986, 29: 833–837.

    Article  PubMed  CAS  Google Scholar 

  27. Price, K. E., Kresel, P. A., Farchione, L. A., Siskin, S. B., Karpow, S. A.: Epidemiological studies of aminoglycoside resistance in the U.S.A. Journal of Antimicrobial Chemotherapy 1981, Supplement A, 8: 89–105.

    PubMed  Google Scholar 

  28. Ghuysen, J.-M.: Bacterial active-site serine, penicillin-interactive proteins and domains. Mechanism, structure and evolution. Reviews of Infectious Diseases 1988, 10: 726–732.

    Article  PubMed  CAS  Google Scholar 

  29. O’Brien, T. F. and the International Survey of Antibiotic Resistance Group: Resistance to antibiotics at medical centers in different parts of the world. Journal of Antimicrobial Chemotherapy 1986, Supplement C, 18: 243–253.

    PubMed  Google Scholar 

  30. Murray, B. E., Mederski-Samoraj, B. D.: Transferable beta-lactamase: a new mechanism for in vitro penicillin resistance in Streptococcus faecalis. Journal of Clinical Investigation 1983, 72: 1168–1171.

    Article  PubMed  CAS  Google Scholar 

  31. Richmond, M. H., Sykes, R. B.: The β-lactamases of gram-negative bacteria and their possible physiologic role. Advances in Microbial Physiology 1973, 9: 31–88.

    Article  PubMed  CAS  Google Scholar 

  32. Matthew, M.: Plasmid mediated β-lactamases of gram-negative bacteria: properties and distribution. Journal of Antimicrobial Chemotherapy 1979; 5: 349–358.

    Article  PubMed  CAS  Google Scholar 

  33. Medieros, A. A.: β-lactamases. British Medical Bulletin 1984, 40: 18–27.

    Google Scholar 

  34. Williams, J. D., Moosdeen, F.: Antibiotic resistance in Haemophilus influenzae: epidemiology, mechanisms, and therapeutic possibilities. Reviews of Infectious Diseases 1986, Supplement 5, 8: S555-S560.

    PubMed  Google Scholar 

  35. Jokipii, L., Jokipii, A. M. M.: Emergence and prevalence of β-lactamase producing Haemophilus influenzae in Finland and susceptibility of 102 respiratory isolates to eight antibiotics. Journal of Antimicrobial Chemotherapy 1980, 6: 623–631.

    Article  PubMed  CAS  Google Scholar 

  36. Scheifele, D. W.: Ampicillin-resistant Haemophilus influenzae in Canada: nationwide survey of hospital laboratories. Canadian Medical Association Journal 1979, 121: 198–202.

    PubMed  CAS  Google Scholar 

  37. Machka, K., Braveny, I., Dabernat, H., Dornbush, K., VanDyck, E., Kayser, F. H., VanKlingeren, B., Mittermayer, H., Perea, E., Powell, M.: Distribution and resistance patterns of Haemophilus influenzae: a European cooperative study. European Journal of Clinical Microbiology 1988, 7: 14–24.

    Article  CAS  Google Scholar 

  38. McCracken, G. H. Jr., Nelson, J. D., Kaplan, S. L., Overturf, G. D., Rodriguez, W. J., Steele, R. W.: Consensus report: antimicrobial therapy for bacterial meningitis in infants and children. Pediatric Infectious Disease Journal 1987, 6: 501–505.

    Article  PubMed  Google Scholar 

  39. Falkow, S., Elwell, L. P., deGraaff, J., Heffron, F., Mayer, L.: A possible model for the development of plasmid-mediated penicillin resistance in the gonococcus. In: Catterall, R. D., Nicol, C. S. (ed.): Sexually Transmitted Disease, Academic Press, London, 1976, p. 120–133.

    Google Scholar 

  40. Anonymous: Penicillinase-producing Neisseria gonorrhoeae migrating northward. Alliance for the Prudent Use of Antibiotics, 1986, 4: 1.

    Google Scholar 

  41. Stobberingh, E. E., Houben, A. W., vanBoven, C. P. A.: Cephalosporin resistance among gram-negative hospital strains and the prevalence of β-lactamase types. Antonie van Leeuwenhoek 1982, 48: 200–201.

    Article  Google Scholar 

  42. Opferkuch, W., Cullmann, W.: Beta-lactamases in ampicillin-resistant Enterobacteriaceae. Infection 1983, Supplement 2, 11: S83-S84.

    Article  PubMed  Google Scholar 

  43. Roy, C., Segura, C., Tirado, M., Reig, R., Hermida, M., Teruel, D., Foz, A.: Frequency of plasmid-determined beta-lactamases in 680 consecutively isolated strains of Enterobacteriaceae. European Journal of Clinical Microbiology 1985, 4: 146–147.

    Article  PubMed  CAS  Google Scholar 

  44. Simpson, I. N., Knothe, H., Plested, S. J., Harper, P. B.: Qualitative and quantitative aspects of β-lactamase production as mechanisms of β-lactam resistance in a survey of clinical isolates from faecal samples. Journal of Antimicrobial Chemotherapy 1986, 17: 725–727.

    Article  PubMed  CAS  Google Scholar 

  45. Medeiros, A. A., Cohenford, M., Jacoby, G. A.: Five novel plasmid-determined β-lactamases. Antimicrobial Agents and Chemotherapy 1985, 27: 715–719.

    Article  PubMed  CAS  Google Scholar 

  46. Bush, K., Sykes, R. B.: Characterization and epidemiology of β-lactamases. In: Peterson, P. K., Verhoef, J. (ed.): Antimicrobial Agents Annual 2, Elsevier, Amsterdam, 1987, p. 371–382.

    Google Scholar 

  47. Medeiros, A. A., Hedges, R. W., Jacoby, G. A.: Spread of a “Pseudomonas-specific” β-lactamase to plasmids of enterobacteria. Journal of Bacteriology 1982, 149: 700–707.

    PubMed  CAS  Google Scholar 

  48. Williams, R. J., Livermore, D. M., Lindridge, M. A., Said, A. A., Williams, J. D.: Mechanisms of beta-lactam resistance in British isolates of Pseudomonas aeruginosa. Journal of Medical Microbiology 1984, 17: 283–293.

    Article  PubMed  CAS  Google Scholar 

  49. Jouvenot, M., Bonin, P., Michel-Briand, Y.: Frequency of β-lactamases that are markedly active against carbenicillin in Pseudomonas aeruginosa strains isolated in a medical school hospital. Journal of Antimicrobial Chemotherapy 1983, 12: 451–458.

    Article  PubMed  CAS  Google Scholar 

  50. Bush, K., Sykes, R. B.: β-lactamase inhibitors in perspective. Journal of Antimicrobial Chemotherapy 1983, 11: 97–107.

    Article  PubMed  CAS  Google Scholar 

  51. Neu, H. C.: The role of β-lactamase inhibitors in chemotherapy. Pharmacology and Therapeutics 1985, 30: 1–18.

    Article  PubMed  CAS  Google Scholar 

  52. Sanders, C. C., Iaconis, J. P., Bodey, G. P., Samonis, G.: Resistance to ticarcillin/potassium clavulanate among clinical isolates of Enterobacteriaceae: role of PSE-1 and high levels of TEM-1 and SHV-1 and problems with false susceptibility in disk diffusion tests. Antimicrobial Agents and Chemotherapy 1988, (in press).

    Google Scholar 

  53. Kliebe, C., Nies, B. A., Meyer, J. F., Tolxdorff-Neutz-ling, R. M., Wiedemann, B.: Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrobial Agents and Chemotherapy 1985, 28: 302–309.

    Article  PubMed  CAS  Google Scholar 

  54. Sirot, D., Sirot, J., Labia, R., Morand, A., Courvalin, P., Darfeuille-Michaud, A., Perroux, R., Cliezel, R.: Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel β-lactamase. Journal of Antimicrobial Chemotherapy 1987, 20: 323–334.

    Article  PubMed  CAS  Google Scholar 

  55. Sirot, J., Labia, R., Thabaut, A.: Klebsiella pneumoniae strains more resistant to ceftazidime than to other third-generation cephalosporins. Journal of Antimicrobial Chemotherapy 1987, 20: 611–612.

    Article  PubMed  CAS  Google Scholar 

  56. Spencer, R. C., Wheat, P. F., Winstanley, T. G., Cox, D. M., Plested, S. J.: Novel β-lactamase in a clinical isolate of Klebsiella pneumoniae conferring unusual resistance to β-lactam antibiotics. Journal of Antimicrobial Chemotherapy 1987, 20: 919–921.

    Article  PubMed  CAS  Google Scholar 

  57. Bauernfeind, A., Hörl, G.: Novel R-factor borne β-lactamase of Escherichia coli conferring resistance to cephalosporins. Infection 1987, 15: 257–259.

    Article  PubMed  CAS  Google Scholar 

  58. Redjeb, S. B., Yaghlane, H. B., Boujnah, A., Philippon, A., Labia, R.: Synergy between clavulanic acid and newer β-lactams on nine clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Salmonella typhi-murium resistant to third-generation cephalosporins. Journal of Antimicrobial Chemotherapy 1988, 21: 263–264.

    Article  PubMed  Google Scholar 

  59. Gutmann, L., Kitzis, M. D., Billot-Klein, D., Goldstein, F., TranVanNhieu, G., Lu, T., Carlet, J., Collatz, E., Williamson, R.: Plasmid mediated β-lactamase (TEM-7) involved in resistance to ceftazidime and aztreonam. Reviews of Infectious Disease 1988, 10: 860–866.

    Article  CAS  Google Scholar 

  60. Sougakoff, W., Goussard, S., Gerbaud, G., Courvalin, P.: Plasmid-mediated resistance to third-generation cephalosporins due to point-mutations in TEM-type penicillinase genes. Reviews of Infectious Diseases 1988, 10: 879–884.

    Article  PubMed  CAS  Google Scholar 

  61. Sanders, C. C.: The chromosomal β-lactamases. In: Bryan, L. E. (ed.) Microbial drug resistance, Springer-Verlag, Berlin, (in press).

    Google Scholar 

  62. Matthew, M., Harris, A. M.: Identification of β-lactamases by analytical isoelectric focusing: correlation with bacterial taxonomy. Journal of General Microbiology 1976, 94: 55–67.

    Article  PubMed  Google Scholar 

  63. Sanders, C. C.: Chromosomal cephalosporinases responsible for multiple resistance to newer β-lactam antibiotics. Annual Review of Microbiology 1987, 41: 573–593.

    Article  PubMed  CAS  Google Scholar 

  64. Lindberg, F., Lindquist, S., Normark, S.: Genetic basis of induction and overproduction of chromosomal type I β-lactamase in non-fastidious gram-negative rods. Reviews of Infectious Diseases 1988, 10: 782–785.

    Article  PubMed  CAS  Google Scholar 

  65. Lindberg, F., Lindquist, S., Normark, S.: Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii β-lactamase. Journal of Bacteriology 1987, 169: 1923–1928.

    PubMed  CAS  Google Scholar 

  66. Sanders, W. E. Jr., Sanders, C. C.: Inducible β-lactamases: clinical and epidemiological implications for use of newer cephalosporins. Reviews of Infectious Diseases 1988, 10: 830–838.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. G. Jackson H. D. Schlumberger H. J. Zeiler

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Sanders, C.C. (1989). Bacterial Proteins Involved in Antimicrobial Drug Resistance. In: Jackson, G.G., Schlumberger, H.D., Zeiler, H.J. (eds) Perspectives in Antiinfective Therapy. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-86064-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86064-4_16

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07979-6

  • Online ISBN: 978-3-322-86064-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics