Skip to main content

Uniformization of the orbifold of a finite reflection group

  • Chapter
Frobenius Manifolds

Part of the book series: Aspects of Mathematics ((ASMA,volume 36))

Abstract

Let W be a finite reflection group of a real vector space V. If W is crystallographic, then the quotient space V*//W appears in several contexts in geometry: i) in Lie theory as the quotient space of a simple Lie algebra by the adjoint Lie group action [Ch1,2] and ii) in complex geometry as the base space of the universal unfolding of a simple singularity [Br1]. Having these backgrounds, V*//W carries some distinguished geometric properties and structures, which, fortunately and also amusingly, can be described only in terms of the reflection group regardless whether W is crystallographic or not. We recall two of them:

  1. 1.

    The complexified regular orbit space (V*//W) regC is a K(π, 1)-space (Brieskorn [Br3], Deligne [De]). In other words, π 1((V*//W) regC is an Artin group (i.e. a generalized braid group [B-S][De]) and the universal covering space of (V*//W) regC is contractible (cf. also [Sa]).

  2. 2.

    The quotient space V*//W carries a flat structure (Saito [S3][S6])1. This means roughly that the tangent bundle of V*//W carries a flat metric J together with some additional structures. Nowadays, a flat structure without a primitive form is also called a Frobenius manifold structure with gravitational descendent (Dubrovin [Du], Manin [Ma1,2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.G.: Meromorphic connections with logarithmic poles along a free divisor, MPI Preprint Series 90 (2002).

    Google Scholar 

  2. Arnold, V.I.: Normal forms for functions near degenerate critical points, the Weyl groups of A k , D k , E k and Lagrangian singularities; Funct. Anal. 27(1972),254–272.

    Google Scholar 

  3. Arnold, V.I.: Critical points of functions on a manifold with boundary, the simple Lie groups B k , C k and F 4 and singularities of evolutes; Russian Math. Surveys 33 (1978), 99–116.

    Article  Google Scholar 

  4. Bourbaki, N.: Elements de mathematique, Fasc. XXXIV, Groupes et algebres de Lie, Chs. 4–6, Hermann, Paris 1968.

    Google Scholar 

  5. Brieskorn, Egbert: Singular elements of semisimple algebraic groups, Actes Congres Int. Math. 2, Nice (1970), 279–284.

    MathSciNet  Google Scholar 

  6. Brieskorn, Egbert: Die Fundamental Gruppe des Raumes der Regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Inventiones Math. 12, 57–61 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  7. Brieskorn, Egbert: Sur les groupes de tresses. Sém. Bourbaki (1971/71);

    Google Scholar 

  8. Brieskorn, Egbert Lect.Notes Math., 317, 21–44 (1973).

    Article  MathSciNet  Google Scholar 

  9. Brieskorn, Egbert & Saito, Kyoji: Artin Gruppen und Coxeter Gruppen, Inventiones Math. 17, 245–271 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  10. Chevalley, Claude: The Betti numbers of the exceptional simple Lie groups, Proc. Intern. Congress of Math. (Cambrdge, Mass., 1950), vol.2, Amer. Math.Soc, Province RI, 1952,pp.21–24.

    Google Scholar 

  11. Chevalley, Claude, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782.

    Article  MATH  MathSciNet  Google Scholar 

  12. Coleman, A.J.: The Betti numbers of the simple Lie groups, Canad. J. Math. 10, 349–356 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  13. Coxeter, H.S.M.: Discrete groups generated by reflections. Ann. of Math. 35 (1934), 588–621.

    Article  MathSciNet  Google Scholar 

  14. Coxeter, H.S.M.: The product of the generators of a finite group generated by reflections, Duke Math. J. 18 (1951), 765–782.

    MATH  MathSciNet  Google Scholar 

  15. De Contini, C. & Salvetti, Mario: Cohomology of Coxeter groups and Artingroups, Math. Res. Lett. 7 (2000).

    Google Scholar 

  16. Deligne, Pierre: Les immeubles des tresses géneralizé, Inventiones Math. 17 273–302 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  17. Deligne, Pierre: Action du groupe des tresses sur catégorie, Invent, math. 128, 159–175 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  18. Dubrovin, Boris: Geometry of 2D-Topological Field Theory, LN in Math. 1620, 120–348 (1996).

    MathSciNet  Google Scholar 

  19. Givental, Alexander: An-1 singularites and nKdV hierarchies, math.AG/0209205.

    Google Scholar 

  20. Hartshorne, Robin: Residue and Duality, Lecture Notes in Math.,, Springer, Berlin-Heidelberg-New York, 196.

    Google Scholar 

  21. Hertling, Claus: Probenius Manifolds and Moduli Spaces for Singularities, Cambridge University Press, 2002.

    Book  Google Scholar 

  22. Komatsu, Makoto: Period map of hyperelliptic curves, Preprint 1998

    Google Scholar 

  23. Koblitz, Niels: Introduction to elliptic curves and modular forms, 2nd ed., Grad. Texts in Math., vol.97, Springer-Verlag, New York, 1993.

    Book  MATH  Google Scholar 

  24. Kostant, Beltram: The principal three-dimensional subgroup and the Bett i numbers of a complex simple group, A. J. M., 81, 973–1032 (1959).

    MATH  MathSciNet  Google Scholar 

  25. Kostant, Beltram: Lie group representations on polynomial rings, Amer. J. Math., 85, 327–404 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  26. Kostant, Beltram & Rallis, S.: Orbits and representaions associated with, Amer. J. Math., 93, (1971) 753–809.

    Article  MATH  MathSciNet  Google Scholar 

  27. Looijenga, Eduard: A period mapping for certain semi-universal deformations, Com. Math., 30 (1975), 299–316.

    MATH  MathSciNet  Google Scholar 

  28. Manin, Yuri: Three constructions of Probenius manifolds: a comparative study, Asian J. Math.

    Google Scholar 

  29. Manin, Yuri: Probenius manifolds, Quantum Cohomology, and Moduli Spaces, AMS Colloquim Publications, Vol. 47 (1999).

    Google Scholar 

  30. Mumford, David: Tata Lectures on Theta II, Jacobian thera functions and differential equations, Birkh”auser (1984).

    Google Scholar 

  31. Sabbah, Claude: Déformations isomnodromiques et variétés de Probenius, Svoirs Actuels, EDP Sciences/CNRS Édition (2002).

    Google Scholar 

  32. Saito, Kyoji: Einfach Elliptische Singularitáten, Inv. math., (1974).

    Google Scholar 

  33. Saito, Kyoji: On the uniformization of complements of discriminant loci, AMS Summer Institute, Williams college, 1975, RIMS Kokyuroku 287, 117–137 (1977).

    Google Scholar 

  34. Saito, Kyoji: On a Linear Structureof the Quotient Variety by a Finite Reflexion Group, RIMS Preprint 288 (1979), Publ. RIMS, Kyoto Univ. 29, 535–579 (1993).

    Article  MATH  Google Scholar 

  35. Saito, Kyoji: Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math.27, 265–291 (1981).

    Google Scholar 

  36. Saito, Kyoji: On the period of primitive integrals I, RIMS-412 (1982).

    Google Scholar 

  37. Saito, Kyoji: Period Mapping Associated to a Primitive form, Publ. RIMS, Kyoto Univ., 19, 1231–1264 (1983).

    Article  MATH  Google Scholar 

  38. Saito, Kyoji: The higher residue pairings K (f)K for a family of hypersurface singularities, Proc. Symp. Pure Math., Vol 40 (1983), 441–463.

    Google Scholar 

  39. Saito, Kyoji: The polyhedron dual to the chamber decomposition for a finite Coxeter group, preprint (1997).

    Google Scholar 

  40. Salvetti, Mario: Topology of the complement of real hyperplanes in Cn, Invent, math. 83, (1987) 603–618.

    Article  MathSciNet  Google Scholar 

  41. Saito, Kyoji &Yano, Tamaki & Sekiguchi, Jiro: On a ceertain generator system of the ring of invariants of a finite reflexion group, Comm. Algebra,8, 373–408 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  42. Sekiguchi, Jiro & Shimizu, Yasuhiro: Simple Singularities and Infinitesimally Symmetric Spaces, Proc. Japan Acad. 57, Ser. A (1981), pp42–46.

    Article  MATH  MathSciNet  Google Scholar 

  43. Slodowy, Peter: Simple singularities and Simple Algebraic Groups, Lecture Notes in Math., 815, Springer, Berlin-Heidelberg-New York,1980.

    MATH  Google Scholar 

  44. Springer, Tony A.: Reductive Groups, Proc. of Symposia in Pure Math. Vol. 33 (1979), Part 1, pp.3–27.

    Google Scholar 

  45. Takahashi, Atsushi: Lecture at Kinosaki School on Mirror Symmetry, September 8–12 (2002).

    Google Scholar 

  46. Terao, Hiroaki: The Hodge filtration and contact-order filtration of derivations of Coxeter arrangements, (math.CO/0205058).

    Google Scholar 

  47. Thomae, J.: Beitrag zur Bestimmung von θ(0,0,…,0) durch die Klassenmoduln algebraischer Punktionen, J. für die reine und angew. Math., Bd. 71 (1870) 201–222.

    Article  Google Scholar 

  48. Yamada, Hiroshi: Lie group theoretic construction of period mappings, Math.Z. 220, 231–255 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  49. Yano, Tamaki: On the invariant ring of the Weyl group of type E 7, preprint 1981.

    Google Scholar 

  50. Yoshinaga, Masahiko: The primitive derivation and freeness of multi-Coxeter arrangements, Proc. Japan Acad., 78, Ser. A (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

Saito, K. (2004). Uniformization of the orbifold of a finite reflection group. In: Hertling, K., Marcolli, M. (eds) Frobenius Manifolds. Aspects of Mathematics, vol 36. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-80236-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-80236-1_11

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-80238-5

  • Online ISBN: 978-3-322-80236-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics