Skip to main content

Planning Human-Robot Interaction for Social Navigation in Crowded Environments

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 855))

Abstract

Navigation is one of the crucial skills autonomous robots need to perform daily tasks, and many of the rest depend on it. In this paper, we argue that this dependence goes both ways in advanced social autonomous robots. Manipulation, perception, and most importantly human-robot interaction are some of the skills in which navigation might rely on. This paper is focused on the dependence on human-robot interaction and uses two particular scenarios of growing complexity as an example: asking for collaboration to enter a room and asking for permission to navigate between two people which are talking. In the first scenario, the person physically blocks the path to the adjacent room, so it would be impossible for the robot to navigate to such room. Even though in the second scenario the people talking do not block the path to the other room, from a social point of view, interrupting an ongoing conversation without noticing is undesirable. In this paper we propose a navigation planning domain and a set of software agents which allow the robot to navigate in crowded environments in a socially acceptable way, asking for cooperation or permission when necessary. The paper provides quantitative experimental results including social navigation metrics and the results of a Likert-scale satisfaction questionnaire.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A video of the experiments is located on goo.gl/KdGYBN.

References

  1. Heerink, M., Vanderborght, B., Broekens, J., et al.: Int. J. Soc. Robot. 8, 443 (2016). https://doi.org/10.1007/s12369-016-0374-7

    Article  Google Scholar 

  2. Núnez, P., Manso, L.J., Bustos, P., Drews-Jr, P., Macharet, D.G.: A proposal for the design of a semantic social path planner using CORTEX. In: Workshops on Physical Agent, pp. 31–37 (2016)

    Google Scholar 

  3. Vega, A., Manso, L.J., Macharet, D.G., Bustos, P., Núñez, P.: A new strategy based on an adaptive spatial density function for social robot navigation in human-populated environments. In: Proceedings of REACTS workshop at the International Conference on Computer Analysis and Patterns (2017)

    Google Scholar 

  4. Vega, A., Manso, L.J., Bustos, P., Núñez, P., Macharet, D.G.: Socially acceptable robot navigation over groups of people. In: IEEE Conference on Robot and Human Interactive Communication, RO-MAN2017 (2017)

    Google Scholar 

  5. Charalampous, K., Kostavelis, I., Gasteratos, A.: Robot navigation in large-scale social maps: an action recognition approach. Expert Syst. Appl. 66, 261–273 (2016)

    Article  Google Scholar 

  6. Thrun, S., Gutmann, J.S., Fox, D.: Integrating topological and metric maps for mobile robot navigation: a statistical approach. In: AAAI/IAAI, pp. 989–995 (1998)

    Google Scholar 

  7. Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: a survey. Robot. Auton. Syst. 61(12), 1726–1743 (2013)

    Article  Google Scholar 

  8. Kostavelis, I.: Robot behavioral mapping: a representation that consolidates the human-robot coexistence. Robot. Autom. Eng. 1, 1–3 (2017)

    Google Scholar 

  9. Rios-Martinez, J., Spalanzani, A., Laugier, C.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2015)

    Article  Google Scholar 

  10. Charalampous, K., Kostavelis, I., Gasteratos, A.: Recent trends in social aware robot navigation: a survey. Robot. Auton. Syst. 93, 85–104 (2017)

    Article  Google Scholar 

  11. Mumm, J., Mutlu, B.: Human-robot proxemics: physical and psychological distancing in human-robot interaction. In: Proceedings of the 6th International Conference on Human-robot Interaction, pp. 331–338 (2011)

    Google Scholar 

  12. Walters, M.L., Oskoei, M.A., Syrdal, D.S., Dautenhahn, K.: A long-term human-robot proxemic study. In: 2011 IEEE on RO-MAN, pp. 137 –142 (2011)

    Google Scholar 

  13. Khambhaita, H., Alami, R.: Assessing the social criteria for human-robot collaborative navigation: a comparison of human-aware navigation planners. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1140–1145 (2017)

    Google Scholar 

  14. Unhelkar, V., Pérez-D’Arpino, C., Stirling, L., Shah, J.A.: Human-robot co-navigation using anticipatory indicators of human walking motion. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6183–6190 (2015)

    Google Scholar 

  15. Broz, F.: Planning for human-robot interaction: representing time and human intention. Robotics Institute. Carnegie Mellon University (2008)

    Google Scholar 

  16. Esteves, C., Arechavaleta, G., Laumond, J.-P.: Motion planning for human-robot interaction in manipulation tasks. In: IEEE International Conference on Mechatronics and Automation, vol. 4, pp. 1766–1771 (2005)

    Google Scholar 

  17. Calderita, L.V.: Deep state representation: a unified internal representation for the robotics cognitive architecture CORTEX. University of Extremadura (2015)

    Google Scholar 

  18. Beetz, M., Jain, D., Mösenlechner, L., Tenorth, M.: Towards performing everyday manipulation activities. J. Robot. Auton. Syst. 58(9), 1085–1095 (2010)

    Article  Google Scholar 

  19. Manso, L.J., Bustos, P., Bachiller, P., Núñez, P.: A perception-aware architecture for autonomous robots. Int. J. Adv. Robot. Syst. 12, 174 (2015). https://doi.org/10.5772/61742. ISSN: 1729-8806, InTech

    Article  Google Scholar 

  20. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL-the planning domain definition language (1998)

    Google Scholar 

  21. Haut, M., Manso, L.J., Gallego, D., Paoletti, M., Bustos, P., Bandera, A., Romero-Garces, A.: A navigation agent for mobile manipulators. In: Robot 2015: Second Iberian Robotics Conference, Advances in Intelligent Systems and Computing, vol. 418, pp. 745–756 (2015)

    Google Scholar 

  22. Hall, E.: Proxemics. Curr. Anthropol. 9(2–3), 83–108 (1968)

    Article  Google Scholar 

  23. Okal, B., Arras, K.O.: Learning socially normative robot navigation behaviors with Bayesian inverse reinforcement learning. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2889–2895 (2016)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the MICINN Project TIN2015-65686-C5-5-R, by the Extremaduran Goverment project GR15120, by the Red de Excelencia “Red de Agentes Físicos” TIN2015-71693-REDT, and by the FEDER project 0043-EUROAGE-4-E (Interreg V-A Portugal-Spain - POCTEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Núñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vega, A., Manso, L.J., Cintas, R., Núñez, P. (2019). Planning Human-Robot Interaction for Social Navigation in Crowded Environments. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-5_14

Download citation

Publish with us

Policies and ethics