Skip to main content

Generation and Gene Expression of CD28CD8 T Cells in Human

  • Reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Increase of CD28CD8 T cells is one of the hallmarks of aging in the human immune system. Recent studies reveal the mechanism of generation and gene expression features of CD28CD8 T cells. Here, we focus on the role of interleukin-15 (IL-15) in the generation of CD28CD8 T cells and the identification of unique gene expression in CD28CD8 T cells by microarray gene expression analysis. These new findings enhance our understanding of the origin and function of the CD28CD8 T cells and may provide new means for clinical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberg JA (2012) Aging, inflammation, and HIV infection. Top Antivir Med 20(3):101–105

    PubMed  Google Scholar 

  • Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, Ogg GS, King A, Lechner F, Spina CA, Little S, Havlir DV, Richman DD, Gruener N, Pape G, Waters A, Easterbrook P, Salio M, Cerundolo V, McMichael AJ, Rowland-Jones SL (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8(4):379–385

    Article  CAS  PubMed  Google Scholar 

  • Azuma M, Phillips JH, Lanier LL (1993) CD28 T lymphocytes: antigenic and functional properties. J Immunol 150(4):1147–1159

    CAS  PubMed  Google Scholar 

  • Balamurugan K, Sterneck E (2013) The many faces of C/EBPdelta and their relevance for inflammation and cancer. Int J Biol Sci 9(9):917–933. https://doi.org/10.7150/ijbs.7224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandres E, Merino J, Vazquez B, Inoges S, Moreno C, Subira ML, Sanchez-Ibarrola A (2000) The increase of IFN-gamma production through aging correlates with the expanded CD8+highCD28CD57+ subpopulation. Clin Immunol 96(3):230–235

    Article  CAS  PubMed  Google Scholar 

  • Barathan M, Mohamed R, Saeidi A, Vadivelu J, Chang LY, Gopal K, Ram MR, Ansari AW, Kamarulzaman A, Velu V, Larsson M, Shankar EM (2015) Increased frequency of late-senescent T cells lacking CD127 in chronic hepatitis C disease. Eur J Clin Investig 45(5):466–474. https://doi.org/10.1111/eci.12429

    Article  CAS  Google Scholar 

  • Biassoni R, Cantoni C, Marras D, Giron-Michel J, Falco M, Moretta L, Dimasi N (2003) Human natural killer cell receptors: insights into their molecular function and structure. J Cell Mol Med 7(4):376–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borthwick NJ, Lowdell M, Salmon M, Akbar AN (2000) Loss of CD28 expression on CD8+ T cells is induced by IL-2 receptor gamma chain signalling cytokines and type I IFN, and increases susceptibility to activation-induced apoptosis. Int Immunol 12(7):1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Boucher N, Dufeu-Duchesne T, Vicaut E, Farge D, Effros RB, Schachter F (1998) CD28 expression in T cell aging and human longevity. Exp Gerontol 33(3):267–282

    Article  CAS  PubMed  Google Scholar 

  • Bouchon A, Cella M, Grierson HL, Cohen JI, Colonna M (2001) Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol 167(10):5517–5521

    Article  CAS  PubMed  Google Scholar 

  • Bryl E, Vallejo AN, Weyand CM, Goronzy JJ (2001) Down-regulation of CD28 expression by TNF-alpha. J Immunol 167(6):3231–3238

    Article  CAS  PubMed  Google Scholar 

  • Bukczynski J, Wen T, Watts TH (2003) Costimulation of human CD28 T cells by 4-1BB ligand. Eur J Immunol 33(2):446–454. https://doi.org/10.1002/immu.200310020

    Article  CAS  PubMed  Google Scholar 

  • Cannons JL, Lau P, Ghumman B, DeBenedette MA, Yagita H, Okumura K, Watts TH (2001) 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol 167(3):1313–1324

    Article  CAS  PubMed  Google Scholar 

  • Catalfamo M, Henkart PA (2003) Perforin and the granule exocytosis cytotoxicity pathway. Curr Opin Immunol 15(5):522–527

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Galan L, Arenas-Del Angel MC, Zenteno E, Chavez R, Lascurain R (2009) Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol 6(1):15–25. https://doi.org/10.1038/cmi.2009.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. https://doi.org/10.1038/nri3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu WK, Fann M, Weng NP (2006) Generation and growth of CD28nullCD8+ memory T cells mediated by IL-15 and its induced cytokines. J Immunol 177(11):7802–7810

    Article  CAS  PubMed  Google Scholar 

  • Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19(9):1680–1698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clement MV, Haddad P, Ring GH, Pruna A, Sasportes M (1990) Granzyme B-gene expression: a marker of human lymphocytes “activated” in vitro or in renal allografts. Hum Immunol 28(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130(2):223–233. https://doi.org/10.1016/j.cell.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  • Cooper D, Bansal-Pakala P, Croft M (2002) 4-1BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur J Immunol 32(2):521–529

    Article  CAS  PubMed  Google Scholar 

  • Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser DE (2010) BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 120(1):157–167. https://doi.org/10.1172/JCI40070

    Article  CAS  PubMed  Google Scholar 

  • Echeverria A, Moro-Garcia MA, Asensi V, Carton JA, Lopez-Larrea C, Alonso-Arias R (2015) CD4+CD28null T lymphocytes resemble CD8+CD28null T lymphocytes in their responses to IL-15 and IL-21 in HIV-infected patients. J Leukoc Biol 98(3):373–384. https://doi.org/10.1189/jlb.1A0514-276RR

    Article  CAS  PubMed  Google Scholar 

  • Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, Kronenberg M, Cohen D, Schachter F (1994) Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol 29(6):601–609

    Article  CAS  PubMed  Google Scholar 

  • Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, Harley CB, Villeponteau B, West MD, Giorgi JV (1996) Shortened telomeres in the expanded CD28CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 10(8):F17–F22

    Article  CAS  PubMed  Google Scholar 

  • Effros RB, Cai Z, Linton PJ (2003) CD8 T cells and aging. Crit Rev Immunol 23(1–2):45–64

    Article  CAS  PubMed  Google Scholar 

  • Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157. https://doi.org/10.1111/j.0105-2896.2005.00259.x

    Article  CAS  PubMed  Google Scholar 

  • Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (2016) CD28 Costimulation: from mechanism to therapy. Immunity 44(5):973–988. https://doi.org/10.1016/j.immuni.2016.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, Franceschi C, Passeri M, Sansoni P (1996) Expansion of cytotoxic CD8+CD28 T cells in healthy ageing people, including centenarians. Immunology 88(4):501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fann M, Chiu WK, Wood WH III, Levine BL, Becker KG, Weng NP (2005) Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T-cell aging. Immunol Rev 205:190–206

    Article  CAS  PubMed  Google Scholar 

  • Flies DB, Wang S, Xu H, Chen L (2011) Cutting edge: a monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models. J Immunol 187(4):1537–1541. https://doi.org/10.4049/jimmunol.1100660

    Article  CAS  PubMed  Google Scholar 

  • Foussat A, Coulomb-L'Hermine A, Gosling J, Krzysiek R, Durand-Gasselin I, Schall T, Balian A, Richard Y, Galanaud P, Emilie D (2000) Fractalkine receptor expression by T lymphocyte subpopulations and in vivo production of fractalkine in human. Eur J Immunol 30(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • Franceschetti M, Pievani A, Borleri G, Vago L, Fleischhauer K, Golay J, Introna M (2009) Cytokine-induced killer cells are terminally differentiated activated CD8 cytotoxic T-EMRA lymphocytes. Exp Hematol 37(5):616–628. e612. https://doi.org/10.1016/j.exphem.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frucht DM (2002) IL-23: a cytokine that acts on memory T cells. Sci STKE 2002(114):E1

    Google Scholar 

  • Gandhi NA, Bennett BL, Graham NM, Pirozzi G, Stahl N, Yancopoulos GD (2016) Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov 15(1):35–50. https://doi.org/10.1038/nrd4624

    Article  CAS  PubMed  Google Scholar 

  • Genestier L, Kasibhatla S, Brunner T, Green DR (1999) Transforming growth factor beta1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc. J Exp Med 189(2):231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godlove J, Chiu WK, Weng NP (2007) Gene expression and generation of CD28CD8 T cells mediated by interleukin 15. Exp Gerontol 42(5):412–415. https://doi.org/10.1016/j.exger.2006.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14(5):428–436. https://doi.org/10.1038/ni.2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granville DJ (2010) Granzymes in disease: bench to bedside. Cell Death Differ 17(4):565–566. https://doi.org/10.1038/cdd.2009.218

    Article  CAS  PubMed  Google Scholar 

  • Haddad P, Jenne D, Tschopp J, Clement MV, Mathieu-Mahul D, Sasportes M (1991) Structure and evolutionary origin of the human granzyme H gene. Int Immunol 3(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Haralambieva IH, Painter SD, Kennedy RB, Ovsyannikova IG, Lambert ND, Goergen KM, Oberg AL, Poland GA (2015) The impact of immunosenescence on humoral immune response variation after influenza a/H1N1 vaccination in older subjects. PLoS One 10(3):e0122282. https://doi.org/10.1371/journal.pone.0122282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazzan M, Labalette M, Noel C, Lelievre G, Dessaint JP (1997) Recall response to cytomegalovirus in allograft recipients: mobilization of CD57+, CD28+ cells before expansion of CD57+. Transplantation 63(5):693–698

    Article  CAS  PubMed  Google Scholar 

  • Henkart PA, Sikovsky MV (2003) Cytotoxic T lymphocytes. In: Paul WE (ed) Fundamental Immunology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1127–1150

    Google Scholar 

  • Hosking MP, Flynn CT, Whitton JL (2014) Antigen-specific naive CD8+ T cells produce a single pulse of IFN-gamma in vivo within hours of infection, but without antiviral effect. J Immunol 193(4):1873–1885. https://doi.org/10.4049/jimmunol.1400348

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91(4):521–530

    Article  CAS  PubMed  Google Scholar 

  • Kared H, Camous X, Larbi A (2014) T cells and their cytokines in persistent stimulation of the immune system. Curr Opin Immunol 29:79–85. https://doi.org/10.1016/j.coi.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  • Kennedy J, Kelner GS, Kleyensteuber S, Schall TJ, Weiss MC, Yssel H, Schneider PV, Cocks BG, Bacon KB, Zlotnik A (1995) Molecular cloning and functional characterization of human lymphotactin. J Immunol 155(1):203–209

    CAS  PubMed  Google Scholar 

  • Kinoshita S, Akira S, Kishimoto T (1992) A member of the C/EBP family, NF-IL6 beta, forms a heterodimer and transcriptionally synergizes with NF-IL6. Proc Natl Acad Sci USA 89(4):1473–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klatt T, Ouyang Q, Flad T, Koetter I, Buhring HJ, Kalbacher H, Pawelec G, Muller CA (2005) Expansion of peripheral CD8+CD28 T cells in response to Epstein-Barr virus in patients with rheumatoid arthritis. J Rheumatol 32(2):239–251

    CAS  PubMed  Google Scholar 

  • Kubin MZ, Parshley DL, Din W, Waugh JY, Davis-Smith T, Smith CA, Macduff BM, Armitage RJ, Chin W, Cassiano L, Borges L, Petersen M, Trinchieri G, Goodwin RG (1999) Molecular cloning and biological characterization of NK cell activation-inducing ligand, a counterstructure for CD48. Eur J Immunol 29(11):3466–3477

    Article  CAS  PubMed  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240(4860):1759–1764

    Article  CAS  PubMed  Google Scholar 

  • Lanna A, Coutavas E, Levati L, Seidel J, Rustin MH, Henson SM, Akbar AN, Franzese O (2013) IFN-alpha inhibits telomerase in human CD8+ T cells by both hTERT downregulation and induction of p38 MAPK signaling. J Immunol 191(7):3744–3752. https://doi.org/10.4049/jimmunol.1301409

    Article  CAS  PubMed  Google Scholar 

  • Lazuardi L, Herndler-Brandstetter D, Brunner S, Laschober GT, Lepperdinger G, Grubeck-Loebenstein B (2009) Microarray analysis reveals similarity between CD8+CD28 T cells from young and elderly persons, but not of CD8+CD28+ T cells. Biogerontology 10(2):191–202. https://doi.org/10.1007/s10522-008-9167-1

    Article  CAS  PubMed  Google Scholar 

  • Leitner J, Grabmeier-Pfistershammer K, Steinberger P (2010) Receptors and ligands implicated in human T cell costimulatory processes. Immunol Lett 128(2):89–97. https://doi.org/10.1016/j.imlet.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  • Leitner J, Herndler-Brandstetter D, Zlabinger GJ, Grubeck-Loebenstein B, Steinberger P (2015) CD58/CD2 Is the Primary Costimulatory Pathway in Human CD28CD8+ T Cells. J Immunol 195(2):477–487. https://doi.org/10.4049/jimmunol.1401917

    Article  CAS  PubMed  Google Scholar 

  • Lieberman J, Fan Z (2003) Nuclear war: the granzyme A-bomb. Curr Opin Immunol 15(5):553–559

    Article  CAS  PubMed  Google Scholar 

  • Linn YC, Lau SK, Liu BH, Ng LH, Yong HX, Hui KM (2009) Characterization of the recognition and functional heterogeneity exhibited by cytokine-induced killer cell subsets against acute myeloid leukaemia target cell. Immunology 126(3):423–435. https://doi.org/10.1111/j.1365-2567.2008.02910.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Catalfamo M, Li Y, Henkart PA, Weng NP (2002) IL-15 mimics T cell receptor crosslinking in the induction of cellular proliferation, gene expression, and cytotoxicity in CD8+ memory T cells. Proc Natl Acad Sci U S A 99(9):6192–6197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Ochi H, Cui L, He W (2003) FasL-induced downregulation of CD28 expression on jurkat cells in vitro is associated with activation of caspases. Cell Biol Int 27(12):959–964

    Article  CAS  PubMed  Google Scholar 

  • Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14(8):561–584. https://doi.org/10.1038/nrd4591

    Article  CAS  PubMed  Google Scholar 

  • Mondal AM, Horikawa I, Pine SR, Fujita K, Morgan KM, Vera E, Mazur SJ, Appella E, Vojtesek B, Blasco MA, Lane DP, Harris CC (2013) p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest 123(12):5247–5257. https://doi.org/10.1172/JCI70355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou D, Espinosa J, Lo DJ, Kirk AD (2014) CD28 negative T cells: is their loss our gain? Am J Transplant 14(11):2460–2466. https://doi.org/10.1111/ajt.12937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou D, Espinosa JE, Stempora L, Iwakoshi NN, Kirk AD (2015) Viral-induced CD28 loss evokes costimulation independent alloimmunity. J Surg Res 196(2):241–246. https://doi.org/10.1016/j.jss.2015.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D (2012) C-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151(1):68–79. https://doi.org/10.1016/j.cell.2012.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura M, Umehara H, Nakayama T, Yoneda O, Hieshima K, Kakizaki M, Dohmae N, Yoshie O, Imai T (2002) Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J Immunol 168(12):6173–6180

    Article  CAS  PubMed  Google Scholar 

  • Nociari MM, Telford W, Russo C (1999) Postthymic development of CD28CD8+ T cell subset: age-associated expansion and shift from memory to naive phenotype. J Immunol 162(6):3327–3335

    CAS  PubMed  Google Scholar 

  • Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, McBride OW, Leonard WJ (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73(1):147–157

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, Dodi AI, Travers P, Pawelec G (2003) Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 23(4):247–257

    Article  CAS  PubMed  Google Scholar 

  • Parish ST, JE W, Effros RB (2009) Modulation of T lymphocyte replicative senescence via TNF-{alpha} inhibition: role of caspase-3. J Immunol 182(7):4237–4243. https://doi.org/10.4049/jimmunol.0803449

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Yu Q, Erman B, Appelbaum JS, Montoya-Durango D, Grimes HL, Singer A (2004) Suppression of IL7R alpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21(2):289–302

    Article  CAS  PubMed  Google Scholar 

  • Peng SL, Szabo SJ, Glimcher LH (2002) T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci USA 99(8):5545–5550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JH, Gumperz JE, Parham P, Lanier LL (1995) Superantigen-dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science 268(5209):403–405

    Article  CAS  PubMed  Google Scholar 

  • Plunkett FJ, Franzese O, Finney HM, Fletcher JM, Belaramani LL, Salmon M, Dokal I, Webster D, Lawson AD, Akbar AN (2007) The loss of telomerase activity in highly differentiated CD8+CD28CD27 T cell is associated with decreased Akt (Ser473) phosphorylation. J Immunol 178(12):7710–7719

    Article  CAS  PubMed  Google Scholar 

  • Popescu NC, Zimonjic DB (2002) Chromosome-mediated alterations of the MYC gene in human cancer. J Cell Mol Med 6(2):151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posnett DN, Sinha R, Kabak S, Russo C (1994) Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J Exp Med 179(2):609–618

    Article  CAS  PubMed  Google Scholar 

  • Posnett DN, Edinger JW, Manavalan JS, Irwin C, Marodon G (1999) Differentiation of human CD8 T cells: implications for in vivo persistence of CD8+CD28 cytotoxic effector clones. Int Immunol 11(2):229–241

    Article  CAS  PubMed  Google Scholar 

  • Radziewicz H, Ibegbu CC, Hon H, Bedard N, Bruneau J, Workowski KA, Knechtle SJ, Kirk AD, Larsen CP, Shoukry NH, Grakoui A (2010) Transient CD86 expression on hepatitis C virus-specific CD8+ T cells in acute infection is linked to sufficient IL-2 signaling. J Immunol 184(5):2410–2422. https://doi.org/10.4049/jimmunol.0902994

    Article  CAS  PubMed  Google Scholar 

  • Rahim MM, Makrigiannis AP (2015) Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunol Rev 267(1):137–147. https://doi.org/10.1111/imr.12318

    Article  CAS  PubMed  Google Scholar 

  • Raso V, Natale VM, Duarte AJ, Greve JM, Shephard RJ (2012) Immunological parameters in elderly women: correlations with aerobic power, muscle strength and mood state. Brain Behav Immun 26(4):597–606. https://doi.org/10.1016/j.bbi.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  • Riley JL, June CH (2005) The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 105(1):13–21. https://doi.org/10.1182/blood-2004-04-1596

    Article  CAS  PubMed  Google Scholar 

  • Riley JL, Blair PJ, Musser JT, Abe R, Tezuka K, Tsuji T, June CH (2001) ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement. J Immunol 166(8):4943–4948

    Article  CAS  PubMed  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. https://doi.org/10.1083/jcb.201009094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roos MT, Van Lier RA, Hamann D, Knol GJ, Verhoofstad I, van BD, Miedema F, Schellekens PT (2000) Changes in the composition of circulating CD8+ T cell subsets during acute epstein-barr and human immunodeficiency virus infections in humans. J Infect Dis 182(2):451–458

    Article  CAS  PubMed  Google Scholar 

  • Saeidi A, Buggert M, Che KF, Kong YY, Velu V, Larsson M, Shankar EM (2015) Regulation of CD8+ T-cell cytotoxicity in HIV-1 infection. Cell Immunol 298(1–2):126–133. https://doi.org/10.1016/j.cellimm.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  • Saurwein-Teissl M, Lung TL, Marx F, Gschosser C, Asch E, Blasko I, Parson W, Bock G, Schonitzer D, Trannoy E, Grubeck-Loebenstein B (2002) Lack of antibody production following immunization in old age: association with CD8+CD28 T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168(11):5893–5899

    Article  CAS  PubMed  Google Scholar 

  • Sayers TJ, Brooks AD, Ward JM, Hoshino T, Bere WE, Wiegand GW, Kelly JM, Smyth MJ, Kelley JM (2001) The restricted expression of granzyme M in human lymphocytes. J Immunol 166(2):765–771

    Article  CAS  PubMed  Google Scholar 

  • Schmitt N, Ueno H (2015) Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol 34:130–136. https://doi.org/10.1016/j.coi.2015.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scognamiglio P, Accapezzato D, Casciaro MA, Cacciani A, Artini M, Bruno G, Chircu ML, Sidney J, Southwood S, Abrignani S, Sette A, Barnaba V (1999) Presence of effector CD8+ T cells in hepatitis C virus-exposed healthy seronegative donors. J Immunol 162(11):6681–6689

    CAS  PubMed  Google Scholar 

  • Secombe J, Pierce SB, Eisenman RN (2004) Myc: a weapon of mass destruction. Cell 117(2):153–156

    Article  CAS  PubMed  Google Scholar 

  • Sedelies KA, Sayers TJ, Edwards KM, Chen W, Pellicci DG, Godfrey DI, Trapani JA (2004) Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J Biol Chem 279(25):26581–26587

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2(2):116–126

    Article  CAS  PubMed  Google Scholar 

  • Shelburne CP, Ryan JJ (2001) The role of Th2 cytokines in mast cell homeostasis. Immunol Rev 179:82–93

    Article  CAS  PubMed  Google Scholar 

  • Shresta S, Goda P, Wesselschmidt R, Ley TJ (1997) Residual cytotoxicity and granzyme K expression in granzyme A-deficient cytotoxic lymphocytes. J Biol Chem 272(32):20236–20244

    Article  CAS  PubMed  Google Scholar 

  • Sivko GS, Sanford DC, Dearth LD, Tang D, Dewille JW (2004) CCAAT/enhancer binding protein delta (C/EBPdelta) regulation and expression in human mammary epithelial cells: II. Analysis of activating signal transduction pathways, transcriptional, post-transcriptional, and post-translational control. J Cell Biochem 93(4):844–856

    Article  CAS  PubMed  Google Scholar 

  • Speiser DE, Colonna M, Ayyoub M, Cella M, Pittet MJ, Batard P, Valmori D, Guillaume P, Lienard D, Cerottini JC, Romero P (2001) The activatory receptor 2B4 is expressed in vivo by human CD8+ effector alpha beta T cells. J Immunol 167(11):6165–6170

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BM, Juedes A, Szabo SJ, von Herrath M, Glimcher LH (2003) Antigen-driven effector CD8 T cell function regulated by T-bet. Proc Natl Acad Sci USA 100(26):15818–15823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo SJ, Jacobson NG, Dighe AS, Gubler U, Murphy KM (1995) Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 2(6):665–675

    Article  CAS  PubMed  Google Scholar 

  • Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S (1993) T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature 361(6407):79–82

    Article  CAS  PubMed  Google Scholar 

  • Tarazona R, DelaRosa O, Casado JG, Torre-Cisneros J, Villanueva JL, Galiani MD, Pena J, Solana R (2002) NK-associated receptors on CD8 T cells from treatment-naive HIV-infected individuals: defective expression of CD56. AIDS 16(2):197–200

    Article  PubMed  Google Scholar 

  • Traitanon O, Gorbachev A, Bechtel JJ, Keslar KS, Baldwin WM 3rd, Poggio ED, Fairchild RL (2014) IL-15 induces alloreactive CD28 memory CD8 T cell proliferation and CTLA4-Ig resistant memory CD8 T cell activation. Am J Transplant 14(6):1277–1289. https://doi.org/10.1111/ajt.12719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapani JA, Sutton VR (2003) Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol 15(5):533–543

    Article  CAS  PubMed  Google Scholar 

  • Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146

    Article  CAS  PubMed  Google Scholar 

  • Turner JE, Campbell JP, Edwards KM, Howarth LJ, Pawelec G, Aldred S, Moss P, Drayson MT, Burns VE, Bosch JA (2014) Rudimentary signs of immunosenescence in cytomegalovirus-seropositive healthy young adults. Age (Dordr) 36(1):287–297. https://doi.org/10.1007/s11357-013-9557-4

    Article  CAS  Google Scholar 

  • Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169

    Article  CAS  PubMed  Google Scholar 

  • Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ (1999) Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol 162(11):6572–6579

    CAS  PubMed  Google Scholar 

  • Vallejo AN, Bryl E, Klarskov K, Naylor S, Weyand CM, Goronzy JJ (2002) Molecular basis for the loss of CD28 expression in senescent T cells. J Biol Chem 277(49):46940–46949

    Article  CAS  PubMed  Google Scholar 

  • van Aalderen MC, Remmerswaal EB, Verstegen NJ, Hombrink P, ten Brinke A, Pircher H, Kootstra NA, ten Berge IJ, van Lier RA (2015) Infection history determines the differentiation state of human CD8+ T cells. J Virol 89(9):5110–5123. https://doi.org/10.1128/JVI.03478-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voehringer D, Koschella M, Pircher H (2002) Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood 100(10):3698–3702

    Article  CAS  PubMed  Google Scholar 

  • Waller EC, McKinney N, Hicks R, Carmichael AJ, Sissons JG, Wills MR (2007) Differential costimulation through CD137 (4-1BB) restores proliferation of human virus-specific “effector memory” (CD28 CD45RAhi) CD8+ T cells. Blood 110(13):4360–4366. https://doi.org/10.1182/blood-2007-07-104604

    Article  CAS  PubMed  Google Scholar 

  • Walsh ST (2012) Structural insights into the common gamma-chain family of cytokines and receptors from the interleukin-7 pathway. Immunol Rev 250(1):303–316. https://doi.org/10.1111/j.1600-065X.2012.01160.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Chen L (2004) Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses. Microbes Infect 6(8):759–766

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X, Murphy TL, Russell JH, Allison JP, Murphy KM (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4(7):670–679

    Article  CAS  PubMed  Google Scholar 

  • Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  CAS  PubMed  Google Scholar 

  • Weinberger B, Welzl K, Herndler-Brandstetter D, Parson W, Grubeck-Loebenstein B (2009) CD28CD8+ T cells do not contain unique clonotypes and are therefore dispensable. Immunol Lett 127(1):27–32. https://doi.org/10.1016/j.imlet.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  • Weng NP (2006) Aging of the immune system: how much can the adaptive immune system adapt? Immunity 24(5):495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng NP, Akbar A, Goronzy J (2009) CD28- T cells: their role in the age-associated decline of immune function. Trends in Immunol 30(7):306–312. https://doi.org/10.1016/j.it.2009.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, Currier NL, Nikolich-Zugich D, Kaye J, Nikolich-Zugich J (2014) Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol 192(5):2143–2155. https://doi.org/10.4049/jimmunol.1301721

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA (2003) IL-13 effector functions. Annu Rev Immunol 21:425–456

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57. https://doi.org/10.1038/ni.1674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank Monchou Fann, Kevin Becker, and William Wood III for conducting and assisting in the microarray experiments; Karen Chiu and Jason Godlove for the study of IL-15 induced down-regulation of CD28 expression; Robert Wersto, Joe Chrest, and Coung Nguyen for cell sorting; and Karen Madara and her staff at the NIA Apheresis Unit for processing the blood samples. This research was supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-ping Weng .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, J., Weng, Np. (2019). Generation and Gene Expression of CD28CD8 T Cells in Human. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-99375-1_17

Download citation

Publish with us

Policies and ethics