Skip to main content

Mathematical Modelling of the Interaction of BH3-Peptides with Full-Length Proteins, and Account of the Influence of Point Mutations on the Stability of the Formed Biological Complex on the Example of the Bcl-2 Family Proteins

  • Chapter
  • First Online:
Book cover Mathematical Modeling of Protein Complexes

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 692 Accesses

Abstract

This chapter presents a new method that allows one to qualitatively determine the effect of point mutations in peptides on the stability of the formed complex with full-length proteins. On the basis of the developed approach, a qualitative correlation of the obtained results with the dissociation constant was revealed using the example of the formation of the BH3 peptide biological complex of Bmf, Puma, Bad, Hrk, Bax, Bik, Noxa, Bid, Bim, and Bak proteins with the Bcl-xl protein and the BH3 peptides protein Bax with the Bcl-2 protein, taking into account the replacement of amino acid residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Santiago, I. Gutierrez-Canas, J. Dotor, G. Palao, J.J. Lasarte, J. Ruiz, J. Prieto, F. Borras-Cuesta, J.L. Pablos, Topical application of a peptide inhibitor of transforming growth factor-\(\beta \)1 ameliorates bleomycin-induced skin fibrosis. J. Investig. Dermatol. 125(3), 450–455 (2005)

    Google Scholar 

  2. N. Suzuki, S. Hazama, H. Iguchi, K. Uesugi, H. Tanaka, K. Hirakawa, A. Aruga, T. Hatori, H. Ishizaki, Y. Umeda, T. Fujiwara, T. Ikemoto, M. Shimada, K. Yoshimatsu, R. Shimizu, H. Hayashi, K. Sakata, H. Takenouchi, H. Matsui, Y. Shindo, M. Iida, Y. Koki, H. Arima, H. Furukawa, T. Ueno, S. Yoshino, Y. Nakamura, M. Oka, H. Nagano, Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic cancer: VENUS-PC study. Cancer Sci. 108(1), 73–80 (2017)

    Google Scholar 

  3. R. Arafeh, K. Flores, A. Keren-Paz, G. Maik-Rachline, N. Gutkind, S. Rosenberg, R. Seger, Y. Samuels, Combined inhibition of MEK and nuclear ERK translocation has synergistic antitumor activity in melanoma cells. Sci. Rep. 7(1), 16345 (2017)

    Google Scholar 

  4. H. Dai, X.W. Meng, S.H. Kaufmann, BCL2 family, mitochondrial apoptosis, and beyond. Cancer Transl. Med. 2(1), 7–20 (2016)

    Google Scholar 

  5. J. Ding, Z. Zhang, G.J. Roberts, M. Falcone, Y. Miao, Y. Shao, X.C. Zhang, D.W. Andrews, J. Lin, Bcl-2 and Bax interact via the BH1-3 groove-BH3 motif interface and a novel interface involving the BH4 motif. J. Biol. Chem. 285(37), 28749–28763 (2010)

    Google Scholar 

  6. V. Bhat, M.B. Olenick, B.J. Schuchardt, D.C. Mikles, C.B. McDonald, A. Farooq, Molecular determinants of the binding specificity of BH3 ligands to BclXL apoptotic repressor. Biopolymers 101(6), 573–582 (2014)

    Google Scholar 

  7. P.E. Czabotar, G. Lessene, A. Strasser, J.M. Adams, Control of apoptosis by the Bcl-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15(1), 49–63 (2014)

    Google Scholar 

  8. N. Echeverry, D. Bachmann, F. Ke, A. Strasser, H.U. Simon, T. Kaufmann, Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ. 20(6), 785–799 (2013)

    Google Scholar 

  9. T. Moldoveanu, Q. Liu, A. Tocilj, M. Watson, G. Shore, K. Gehring, The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol. Cell 24(5), 677–688 (2006)

    Google Scholar 

  10. H. Wang, C. Takemoto, R. Akasaka, T. Uchikubo-Kamo, S. Kishishita, K. Murayama, T. Terada, L. Chen, Z.J. Liu, B.C. Wang, S. Sugano, A. Tanaka, M. Inoue, T. Kigawa, M. Shirouzu, S. Yokoyama, Novel dimerization mode of the human Bcl-2 family protein Bak, a mitochondrial apoptosis regulator. J. Struct. Biol. 166(1), 32–37 (2009)

    Google Scholar 

  11. M. Suzuki, R.J. Youle, N. Tjandra, Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103(4), 645–654 (2000)

    Google Scholar 

  12. T. Moldoveanu, A.V. Follis, R.W. Kriwacki, D.R. Green, Many players in BCL-2 family affairs. Trends Biochem. Sci. 39(3), 101–111 (2014)

    Google Scholar 

  13. http://www.uniprot.org/

  14. A.M. Petros, A. Medek, D.G. Nettesheim, D.H. Kim, H.S. Yoon, K. Swift, E.D. Matayoshi, T. Oltersdorf, S.W. Fesik, Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci. USA 98(6), 3012–3017 (2001)

    Google Scholar 

  15. M.G. Hinds, M. Lackmann, G.L. Skea, P.J. Harrison, D.C. Huang, C.L. Day, The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J. 22(7), 1497–1507 (2003)

    Google Scholar 

  16. C. Correia, S.H. Lee, X.W. Meng, N.D. Vincelette, K.L. Knorr, H. Ding, G.S. Nowakowski, H. Dai, S.H. Kaufmann, Emerging understanding of Bcl-2 biology: implications for neoplastic progression and treatment. Biochem. Biophys. Acta. 1853(7), 1658–1671 (2015)

    Google Scholar 

  17. G. Lessene, P.E. Czabotar, P.M. Colman, BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov. 7(12), 989–1000 (2008)

    Google Scholar 

  18. C. Billard, BH3 mimetics: status of the field and new developments. Mol. Cancer Ther. 12(9), 1691–1700 (2013)

    Google Scholar 

  19. H. Puthalakath, A. Strasser, Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 9(5), 505–512 (2002)

    Google Scholar 

  20. M.C. Wei, T. Lindsten, V.K. Mootha, S. Weiler, A. Gross, M. Ashiya, C.B. Thompson, S.J. Korsmeyer, tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14(16), 2060–2071 (2000)

    Google Scholar 

  21. A. Letai, M.C. Bassik, L.D. Walensky, M.D. Sorcinelli, S. Weiler, S.J. Korsmeyer, Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3), 183–192 (2002)

    Google Scholar 

  22. G. Dewson, Interplay of Bcl-2 proteins decides the life or death fate. Open Cell Signal. J. 3, 3–8 (2011)

    Google Scholar 

  23. B. Ku, C. Liang, J.U. Jung, B.H. Oh, Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res. 21, 627–641 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Kulikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koshlan, T., Kulikov, K. (2018). Mathematical Modelling of the Interaction of BH3-Peptides with Full-Length Proteins, and Account of the Influence of Point Mutations on the Stability of the Formed Biological Complex on the Example of the Bcl-2 Family Proteins. In: Mathematical Modeling of Protein Complexes. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-98304-2_7

Download citation

Publish with us

Policies and ethics