Skip to main content

Physiological Adaptations for Breath-Hold Diving

  • Chapter
  • First Online:
Book cover Marine Mammals

Abstract

Marine mammals are adapted to long interruptions in breathing that enable them to maintain an oxygen-based metabolism and physiological homeostasis while underwater. The pulmonary and cardiovascular changes associated with the dive response include cessation of breathing (apnea), a decrease in heart rate (bradycardia), a concurrent reduction in cardiac output, and peripheral vasoconstriction that maintains central arterial blood pressure. A dive response during aerobic dives enables marine mammals to balance the conflicting demands of (1) optimizing the distribution and use of blood and muscle oxygen stores to maximize the ADL over the normal range of diving metabolic rates and (2) ensuring that active muscle receives adequate oxygen as exertion increases. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Carnivorous marine mammals rely primarily on fat for ATP synthesis under resting, normoxic conditions, and during dives within their ADL. Herbivorous Sirenia have more carbohydrate in their diet than carnivorous marine mammals but probably rely on the aerobic metabolism of a mixture of carbohydrate, amino acids, and short-chain fatty acids, the latter of which result from the fermentation of structural polysaccharides such as cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams SH, Costa DP (1993) Water conservation and protein metabolism in northern elephant seal pups during the postweaning fast. J Comp Physiol B 163:367–373

    Article  CAS  PubMed  Google Scholar 

  • Alsina-Guerrero MM (2011) Blood values from wild and rehabilitating Antillean manatees (Trichechus manatus manatus) from Puerto Rico. Master Thesis, Western Illinois University

    Google Scholar 

  • Andersen HT (1966) Physiological adaptations in diving vertebrates. Physiol Rev 46:212–243

    Article  CAS  PubMed  Google Scholar 

  • Andersson JPA, Line MH, Runow W, Schagatay EKA (2002) Diving response and arterial oxygen saturation during apnea and exercise in breath-hold divers. J Appl Physiol 93:882–886

    Article  PubMed  Google Scholar 

  • Andrews RD, Jones DR, Williams JD, Thorson PH, Oliver GW, Costa DP, Le Boeuf BJ (1997) Heart rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol 200:2083–2095

    CAS  PubMed  Google Scholar 

  • Bert P (1870) Lecons Sur La Physiologie Comparee De La Respiration. Bailliere, Paris, pp 526–553

    Google Scholar 

  • Best RC (1983) Apparent dry-season fasting in Amazonian manatees (Mammalia: Sirenia). Biotropica 15:61–64

    Article  Google Scholar 

  • Bevan RM, Butler PJ (1992) Cardiac output and blood flow distribution during swimming and voluntary diving of the tufted duck (Aythya fuligula). J Exp Biol 168:199–217

    Google Scholar 

  • Blazquez E, Castro M, Herrera E (1971) Effect of a high-fat diet on pancreatic insulin release, glucose tolerance and hepatic gluconeogenesis in male rats. Rev Espan Fisol 27:297–304

    CAS  Google Scholar 

  • Blix AS, Folkow B (1983) Cardiovascular adjustments to diving in mammals and birds. In: Shepherd JT, Abboud FM (eds). Handbook of physiology: the cardiovascular system, section 2. Am Physiol Soc, Wiley-Blackwell, Bethesda, pp 917–945

    Google Scholar 

  • Blix AS, Walløe L, Messelt EB, Folkow LP (2010) Selective brain cooling and its vascular basis in diving seals. J Exp Biol 213:2610–2616

    Article  PubMed  Google Scholar 

  • Bradley SE, Bing RS (1942) Renal function in the Harbor seal (Phoca vitulina) during asphyxial ischemia and pyrogenic hyperemia. J Cell Comp Physiol 19:229–237

    Article  CAS  Google Scholar 

  • Bradley SE, Mudge GH, Blake WD (1954) The renal excretion of sodium, potassium, and water by the harbor seal (Phoca vitulina): effect of apnea; sodium, potassium, and water loading; pitressin; and mercurial diuresis. J Cell Comp Physiol 43:1–22

    Article  CAS  PubMed  Google Scholar 

  • Bron KM, Murdaugh HV, Millen JE, Lenthall R, Raskin P, Robin ED (1966) Arterial constrictor response in a diving mammal. Science 152:540–543

    Article  CAS  PubMed  Google Scholar 

  • Burmester T, Hankeln T (2009) Commentary: what is the function of neuroglobin? J Exp Biol 212:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 19:416–421

    Article  CAS  PubMed  Google Scholar 

  • Burns JM, Costa DP, Frost K, Harvey JT (2005) Development of body oxygen stores in harbor seals: effects of age, mass and body composition. Physiol Biochem Zool 78:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Burns JM, Lestyk KC, Folkow LP, Hammill MO, Blix AS (2007) Size and distribution of oxygen stores in harp and hooded seals from birth to maturity. J Comp Physiol B 177:687–700

    Article  CAS  PubMed  Google Scholar 

  • Butler PJ (1988) The exercise response and the “classical” diving response during natural submersion in birds and mammals. Can J Zool 66:29–39

    Article  Google Scholar 

  • Butler PJ, Jones DR (1982) The comparative physiology of diving in vertebrates. Adv Comp Physiol Biochem 8:179–364

    Article  CAS  PubMed  Google Scholar 

  • Butler PJ, Woakes AJ (1987) Heart rate in humans during underwater swimming with and without breath-hold. Resp Physiol 69:387–399

    Article  CAS  Google Scholar 

  • Butler PJ, Jones DR (1997) Physiology of diving of birds and mammals. Physiol Rev 77:837–899

    Article  CAS  PubMed  Google Scholar 

  • Butler PJ, Woakes AJ, Boyd IL, Kanatous S (1992) Relationship between heart rate and oxygen consumption during steady-state swimming in California sea lions. J Exp Biol 170:35–42

    CAS  PubMed  Google Scholar 

  • Cabanac A, Folkow LP, Blix AS (1997) Volume capacity and contraction control of the seal spleen. J Appl Physiol 82:1989–1994

    Article  CAS  PubMed  Google Scholar 

  • Cabanac AJ, Messelt EB, Folkow LP, Blix AS (1999) The structure and blood-storing function of the spleen of the hooded seal (Cystophora cristata). J Zool Lond 248:75–81

    Article  Google Scholar 

  • Castellini MA (2012) Life underwater: physiological adaptations to diving and living at sea. Compr Physiol 2:1889–1919

    PubMed  Google Scholar 

  • Castellini MA, Castellini JM (2004) Defining the limits of diving biochemistry in marine mammals. Comp Biochem Physiol B 139:509–518

    Article  PubMed  CAS  Google Scholar 

  • Castellini MA, Somero GN, Kooyman GL (1981) Glycolytic enzyme activities in tissue of marine and terrestrial mammals. Physiol Zool 54:242–252

    Article  CAS  Google Scholar 

  • Castellini MA, Murphy BJ, Fedak M, Ronald K, Gofton N, Hochachka PW (1985) Potentially conflicting metabolic demands of diving and exercise in seals. J Appl Physiol 58:392–399

    Article  CAS  PubMed  Google Scholar 

  • Castellini MA, Costa DP, Huntley AC (1987) Fatty acid metabolism in fasting elephant seal pups. J Comp Physiol B 157:445–449

    Article  CAS  PubMed  Google Scholar 

  • Castellini MA, Davis RW, Kooyman GL (1988) Blood chemistry regulation during repetitive dives in Weddell seals. Physiol Zool 61:379–386

    Article  Google Scholar 

  • Castellini MA, Kooyman GL, Ponganis PJ (1992) Metabolic rates of freely diving Weddell seals: correlations with oxygen stores, swim velocity and diving duration. J Exp Biol 165:181–194

    CAS  PubMed  Google Scholar 

  • Castellini M, Elsner R, Baskurt OK, Wenby RB, Meiselman HJ (2006) Blood rheology of Weddell seals and bowhead whales. Biorheology 43:57–69

    PubMed  Google Scholar 

  • Champagne CD, Houser DS, Crocker DE (2005) Glucose production and substrate cycle activity in a fasting adapted animal, the northern elephant seal. J Exp Biol 208:859–868

    Article  CAS  PubMed  Google Scholar 

  • Champagne CD, Houser DS, Crocker DE (2006) Glucose metabolism during lactation in a fasting animal, the northern elephant seal. Am J Phys 291:R1129–R1137

    Article  CAS  Google Scholar 

  • Champagne CD, Houser DS, Fowler MA, Costa DP, Crocker DE (2012) Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals. Am J Phys 303:R340–R352

    CAS  Google Scholar 

  • Cherepanov GG, Agaphonov VI (2010) Estimation of substrate-energetic fluxes in lactating cows. J Anim Feed Sci 19:13–23

    Article  Google Scholar 

  • Chicco AJ, Le CH, Schlater A, Nguyen A, Kaye S, Beals JW, Scalzo RL, Bell C, Gnaiger E, Costa DP, Crocker DE, Kanatous SB (2014) High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria. J Exp Biol 217:2947–2955

    Article  PubMed  Google Scholar 

  • Clark CA, Burns JM, Schreer JF, Hammill MO (2007) A longitudinal and cross-sectional analysis of total body oxygen store development in nursing harbor seals (Phoca vitulina). J Comp Physiol 177:217–227

    Article  Google Scholar 

  • Condit RS, Ortiz CL (1987) The physiological transition from fasting to feeding in weaned elephant seal pups. Mar Mamm Sci 3:207–219

    Article  Google Scholar 

  • Conley KE, Kayar SR, Rosler K, Hoppler H, Weibel ER, Taylor CR (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand: IV. Capillaries and their relationship to oxidative capacity. Respir Physiol 69:47–64

    Article  Google Scholar 

  • Cowan DF, Smith TL (1999) Morphology of the lymphoid organs of the bottlenose dolphin, Tursiops truncatus. J Anat 194:505–517

    Article  PubMed  PubMed Central  Google Scholar 

  • Crocker DE, Webb PM, Costa DP, Le Boeuf BJ (1998) Protein catabolism and renal function in lactating northern elephant seals. Physiol Zool 71:485–491

    Article  CAS  PubMed  Google Scholar 

  • Czech-Damal NU, Geiseler SJ, Hoff MLM, Schliep R, Ramirez J-M, Folkow LP, Burmester T (2014) The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain. Neuroscience 275:374–383

    Article  CAS  PubMed  Google Scholar 

  • Dasmeh P, Kepp KP (2012) Bridging the gap between chemistry, physiology, and evolution: quantifying the functionality of sperm whale myoglobin mutants. Comp Biochem Physiol A Mol Integr Physiol 161:9–17

    Article  CAS  PubMed  Google Scholar 

  • Dasmeh P, Serohijos AWR, Kepp KP, Shakhnovich EI (2013a) Positively selected sites in cetacean myoglobins contribute to protein stability. PLoS Comput Biol 9(3):e1002929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasmeh P, Davis RW, Kepp KP (2013b) Aerobic dive limits of seals with mutant myoglobin using combined thermochemical and physiological data. Comp Biochem Physiol A Mol Integr Physiol 164:119–128

    Article  CAS  PubMed  Google Scholar 

  • Davis RW (1983) Lactate and glucose metabolism in the resting and diving harbor seal (Phoca vitulina). J Comp Physiol 153:275–288

    Article  CAS  Google Scholar 

  • Davis RW, Kanatous SB (1999) Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. J Exp Biol 202:1091–1113

    CAS  PubMed  Google Scholar 

  • Davis RW, Williams TM (2012) The dive response is exercise modulated to maximize aerobic dive duration. J Comp Physiol A 198:583–591

    Article  Google Scholar 

  • Davis RW, Castellini MA, Kooyman GL, Maue R (1983) Renal glomerular filtration rate and hepatic blood flow during voluntary dives in Weddell seals. Am J Phys 245:R743–R748

    CAS  Google Scholar 

  • Davis RW, Castellini MA, Kooyman GL (1991) Fuel homeostasis in harbor seals during submerged swimming. J Comp Physiol 160:627–635

    Article  CAS  Google Scholar 

  • Davis RW, Beltz WF, Peralta F, Witztum JL (1993) Role of plasma and tissue lipids in the energy metabolism of the harbour seal. Symp Zool Soc Lond 66:369–382

    Google Scholar 

  • Davis RW, Fuiman L, Williams TM, Le Boeuf BJ (2001) Three-dimensional movements and swimming activity of a female northern elephant seal. Comp Biochem Physiol A Mol Integr Physiol 129:759–770

    Article  CAS  PubMed  Google Scholar 

  • Davis RW (2014) A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: From biochemistry to behavior. J Comp Physiol B 184:23–53

    Article  PubMed  Google Scholar 

  • De Miranda MA Jr, Schlater AE, Green TL, Kanatous SB (2012) In the face of hypoxia: myoglobin increases in response to hypoxic conditions and lipid supplementation in cultured Weddell seal skeletal muscle cells. J Exp Biol 215:806–813

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa DS, Metcalfe J, Hoversland AS, Hartman RA (1974) Comparative studies of the respiratory functions of mammalian blood X. Killer whale (Orcinus orca linnaeus) and beluga whale (Delphinapterus leucas). Respir Physiol 20:93–103

    Article  CAS  PubMed  Google Scholar 

  • Dolar MLL, Suarez P, Ponganis PJ, Kooyman GL (1999) Myoglobin in pelagic small cetaceans. J Exp Biol 202:227–236

    CAS  PubMed  Google Scholar 

  • Duffield DA, Ridgway SH, Cornell LH (1983) Hematology distinguishes coastal and offshore forms of dolphins (Tursiops). Can J Zool 61:930–933

    Article  Google Scholar 

  • Edwards NA (1975) Scaling of renal functions in mammals. Comp Biochem Physiol 53:63–66

    Article  Google Scholar 

  • Eisenstein AB, Strack I, Steiner A (1974) Increased hepatic gluconeogenesis without a rise of glucagon secretion in rats fed a high fat diet. Diabetes 23:869–875

    Article  CAS  PubMed  Google Scholar 

  • Elliott NM, Andrews RD, Jones DR (2002) Pharmacological blockade of the dive response: effects on heart rate and diving behaviour in the harbour seal (Phoca vitulina). J Exp Biol 205:3757–3765

    PubMed  Google Scholar 

  • Elsner R (1965) Heart rate response in forced versus trained experimental dives of pinnipeds. Hval Skrif 48:24–29

    Google Scholar 

  • Elsner R, Gooden B (1983) Diving and asphyxia. Cambridge University Press, Cambridge, pp 1–59

    Book  Google Scholar 

  • Elsner R, Franklin DL, Van Citters RL (1964) Cardiac output during diving in an unrestrained sea lion. Nature 202:809–810

    Article  CAS  PubMed  Google Scholar 

  • Elsner R, Shurley JT, Hammond DD, Brooks RE (1970) Cerebral tolerance to hypoxemia in asphyxiated Weddell seals. Respir Physiol 9:287–297

    Article  CAS  PubMed  Google Scholar 

  • Elsner R, Øyasæter S, Almaas R, Saugstad OD (1998) Diving seals, ischemia–reperfusion and oxygen radicals. Comp Biochem Physiol A Mol Integr Physiol 119:975–980

    Article  CAS  PubMed  Google Scholar 

  • Fahlman A, Hooker SK, Olszowkac A, Bostromd BL Jones DR (2009) Estimating the effect of lung collapse and pulmonary shunt on gas exchange during breath-hold diving: the Scholander and Kooyman legacy. Respir Physiol Neurobiol 165:28–39

    Article  CAS  PubMed  Google Scholar 

  • Fedak MA (1986) Diving and exercise in seals: a benthic perspective. In: Brubakk AO, Kanwisher JW, Sundnes G (eds) Diving in animals and man. Tapir, Trondheim Norway, pp 11–32

    Google Scholar 

  • Ferretti G (2001) Extreme human breath-hold diving. Eur J Appl Physiol 84:254–271

    Article  CAS  PubMed  Google Scholar 

  • Field J, Belding HS, Martin AW (1939) An analysis of the relation between basal metabolism and summated tissue respiration in the rat. J Cell Comp Physiol 14:143–157

    Article  CAS  Google Scholar 

  • Folkow LP, Blix AS (1999) Diving behaviour of hooded seals (Cystophora cristata) in the Greenland and Norwegian seas. Polar Biol 22:61–74

    Article  Google Scholar 

  • Folkow LP, Nordøy ES, Blix AS (2004) Distribution and diving behaviour of harp seals (Pagophilus groenlandicus) from the Greenland sea stock. Polar Biol 27:281–298

    Article  Google Scholar 

  • Folkow LP, Ramirez J-M, Ludvigsena S, Ramireza N, Blix AS (2008) Remarkable neuronal hypoxia tolerance in the deep-diving adult hooded seal (Cystophora cristata). Neurosci Lett 446:147–150

    Article  CAS  PubMed  Google Scholar 

  • Foote AD, Liu Y, Thomas GWC, Vinar T, Alfoldi J, Deng J, Dugan S, van Elk N, Joshi V, Khan Z et al (2015) Convergent evolution of the genomes of marine mammals. Nat Gen 47:272–275

    Article  CAS  Google Scholar 

  • Foster GE, Sheel AW (2005) The human diving response, its function, and its control. Scand J Med Sci Sports 15:3–12

    Article  CAS  PubMed  Google Scholar 

  • Fowler SL, Costa DP, Arnould JPY, Gales NJ, Burns JM (2007) Ontogeny of oxygen stores and physiological diving capability in Australian sea lions. Funct Ecol 21:922–935

    Article  Google Scholar 

  • Fuson AL, Cowan DF, Kanatous SB, Polasek LK, Davis RW (2003) Adaptations to diving hypoxia in the heart, kidneys and splanchnic organs of harbor seals (Phoca vitulina). J Exp Biol 206:4139–4154

    Article  PubMed  Google Scholar 

  • Gallivan GJ, Best RC (1980) Metabolism and respiration of the Amazonian manatee (Trichechus inunguis). Physiol Zool 53:245–253

    Article  Google Scholar 

  • George JC, Vallyathan NV, Ronald K (1971) The harp seal Pagophilus groenlandicus (Erxleben, 1777). VII. A histophysiological study of certain skeletal muscles. Can J Zool 49:25–30

    Article  CAS  PubMed  Google Scholar 

  • Gordan R, Gwathmey JK, Xie LH (2015) Autonomic and endocrine control of cardiovascular function. World J Cardiol 7:204–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon MS, Boetius I, Evans DH, McCarthy R, Oglesby LC (1969) Aspects of the physiology of terrestrial life in amphibious fishes. J Exp Biol 50:141–149

    Google Scholar 

  • Greaves DK, Hughson RL, Topor Z, Schreer JF, Burns JM, Hammill MO (2004) Changes in heart rate variability during diving in young harbor seals, Phoca vitulina. Mar Mamm Sci 20:861–871

    Article  Google Scholar 

  • Grinnell SW, Irving L, Scholander PF (1942) Experiments on the relation between blood flow and heart rate in the diving seal. J Cell Comp Physiol 19:341–350

    Article  Google Scholar 

  • Guppy M, Hill RD, Schneider RC, Qvist J, Liggins GC, Zapol WM, Hochachka PW (1986) Microcomputer-assisted metabolic studies of voluntary diving of Weddell seals. Am J Phys 250:Rl75–R187

    Google Scholar 

  • Guyton GP, Stanek KS, Schneider RC, Hochachka PW, Hurford WE, Zapol DG, Liggins GC, Zapol WM (1995) Myoglobin saturation in free-diving Weddell seals. J Appl Physiol 79:1148–1155

    Article  CAS  PubMed  Google Scholar 

  • Halasz NA, Elsner R, Garvie RS, Grotke GT (1974) Renal recovery from ischemia: a comparative study of harbor seal and dog kidneys. Am J Phys 227:1331–1335

    Article  CAS  Google Scholar 

  • Hall FG, Dill DB, Guzman B (1936) Comparative physiology in high altitudes. J Cell Comp Physiol 8:301–313

    Article  CAS  Google Scholar 

  • Hart JS, Irving L (1959) The energetics of harbor seals in air and in water with special considerations of seasonal changes. Can J Zool 37:447–457

    Article  Google Scholar 

  • Helbo S, Fago A (2012) Functional properties of myoglobins from five whale species with different diving capacities. J Exp Biol 215:3403–3410

    Article  CAS  PubMed  Google Scholar 

  • Hiatt EP, Hiatt RB (1942) The effect of food on the glomerular filtration rate and renal blood flow in the harbor seal (Phoca vitulina). J Cell Comp Physiol 19:221–227

    Article  CAS  Google Scholar 

  • Hill RD, Schneider RC, Liggins GC, Schuette AH, Elliott RL, Guppy M, Hochachka PW, Qvist J, Falke KJ, Zapol WM (1987) Heart rate and body temperature during free diving of Weddell seals. Am J Phys 253:R344–R351

    CAS  Google Scholar 

  • Hindell MA, Slip DJ, Burton HR, Bryden MM (1992) Physiological implications of continuous, prolonged and deep dives of the southern elephant seal (Mirounga leonina). Can J Zool 70:370–379

    Article  Google Scholar 

  • Hochachka PW (1976) Design of metabolic and enzymatic machinery to fit lifestyle and environment. Biochem Soc Symp 41:3–31

    CAS  Google Scholar 

  • Hochachka PW (1981) Brain, lung, and heart functions during diving and recovery. Science 212:509–514

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann FG, Opazo JC, Storz JF (2011) Differential loss and retention of cytoglobin, myoglobin, and globin-E during the radiation of vertebrates. Genome Biol Evol 3:588–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogewijs D, Ebner B, Germani F, Hoffmann FG, Fabrizius A, Moens L, Burmester T, Dewilde S, Storz JF, Vinogradov SN, Hankeln T (2012) Androglobin: a chimeric globin in metazoans that is preferentially expressed in mammalian testes. Mol Biol Evol 4:1105–1104

    Article  CAS  Google Scholar 

  • Hoppeler H, Kayar SR, Claassen H, Uhlmann E, Karas RH (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand. III. Skeletal muscles set the demand for oxygen. Respir Physiol 69:27–46

    Article  Google Scholar 

  • Horowitz JF, Klein S (2000) Lipid metabolism during endurance exercise. Am J Clin Nutr 72:558–563

    Article  Google Scholar 

  • Houser DS, Costa DP (2001) Protein catabolism in suckling and fasting northern elephant seal pups (Mirounga angustirostris). J Comp Physiol B 171:635–642

    Article  CAS  PubMed  Google Scholar 

  • Houser DS, Champagne CD, Crocker DE (2007) Lipolysis and glycerol gluconeogenesis in simultaneously fasting and lactating northern elephant seals. Am J Phys 293:R2376–R2381

    CAS  Google Scholar 

  • Hurford WE, Hochachka PW, Schneider RC, Guyton GP, Stanek KS, Zapol DG, Liggins GC, Zapol WM (1996) Splenic contraction, catecholamine release, and blood volume redistribution during diving in the Weddell seal. J Appl Physiol 80:298–306

    Article  CAS  PubMed  Google Scholar 

  • Irving L (1933) On the ability of mammals to survive without breathing. Collect Net 8:138–141

    Google Scholar 

  • Irving L (1938) Changes in the blood flow through the brain and muscles during the arrest of breathing. Am J Phys 122:207–214

    Article  Google Scholar 

  • Irving L (1939a) Respiration in diving mammals. Physiol Rev 19:112–134

    Article  Google Scholar 

  • Irving L (1939b) Changes m blood flow through the brain and muscle during arrest of breathing. Am J Physiol 122:207–214

    Article  Google Scholar 

  • Irving L, Solandt OM, Solandt DY, Fisher KC (1935) The respiratory metabolism of the seal and its adjustments to diving. J Cell Comp Physiol 7:137–151

    Article  Google Scholar 

  • Irving L, Scholander PF, Grinnell SW (1941a) Significance of the heart rate to the diving ability of seals. J Cell Comp Physiol 18:283–297

    Article  CAS  Google Scholar 

  • Irving L, Scholander PF, Grinnell SW (1941b) The respiration of the porpoise, Tursiops truncatus. J Cell Comp Physiol 17:145–168

    Article  CAS  Google Scholar 

  • Irving L, Scholander PF, Grinnell SW (1942) The regulation of arterial blood pressure in the seal during diving. Am J Phys 135:557–566

    Article  Google Scholar 

  • Javed F, He Q, Davidson LE, Thornton JC, Albu J, Boxt L, Krasnow N, Elia M, Kang P, Heshka S, Gallagher D (2010) Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fat-free mass. Am J Clin Nutr 91:907–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobsis PD, Ponganis PJ, Kooyman GL (2001) Effects of training on forced submersion responses in harbor seals. J Exp Biol 204:3877–3885

    CAS  PubMed  Google Scholar 

  • Johansen K, Aakhus T (1963) Central cardiovascular responses to submersion asphyxia in the duck. Am J Phys 205:1167–1171

    Article  CAS  Google Scholar 

  • Jones DR, Fisher HD, McTaggart S, West NH (1973) Heart rate during breath-holding and diving in the unrestrained harbor seal (Phoca vitulina richardi). Can J Zool 51:671–680

    Article  CAS  PubMed  Google Scholar 

  • Kanatous SB, Davis RW, DiMichele LV, Cowan DF (1999) High aerobic capacities in the skeletal muscles of seals, sea lions and fur seals: an adaptation to diving hypoxia. J Appl Physiol 86:1247–1256

    Article  CAS  PubMed  Google Scholar 

  • Kanatous SB, Elsner R, Mathieu-Costello O (2001) Muscle capillary supply in harbor seals. J Appl Physiol 90:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Kanatous SB, Davis RW, Watson R, Polasek L, Williams TM, Mathieu-Costello O (2002) Aerobic capacities in the skeletal muscles of Weddell seals: key to longer dive durations? J Exp Biol 205:3601–3608

    CAS  PubMed  Google Scholar 

  • Kayar SR, Hoppeler H, Lindstedt SL, Classen H, Jones JH, Essen-Gustavsson B, Taylor CR (1989) Total mitochondrial volume in relation to aerobic capacity of horses and steers. Pflugers Arch 413:343–347

    Article  CAS  PubMed  Google Scholar 

  • Keith EO, Ortiz CL (1989) Glucose kinetics in neonatal elephant seals during post-weaning aphagia. Mar Mamm Sci 5:99–115

    Article  Google Scholar 

  • Kerem D, Elsner R (1973) Cerebral tolerance to asphyxial hypoxia in the harbor seal. Respir Physiol 19:188–200

    Article  CAS  PubMed  Google Scholar 

  • Kerem D, Hammond DD, Elsner R (1973) Tissue glycogen levels in the Weddell seal, Leptonychotes weddellii: a possible adaptation to asphyxial hypoxia. Comp Biochem Physiol 45:731–736

    Article  CAS  Google Scholar 

  • Kettelhut IC, Foss MC, Migliorini RH (1980) Glucose homeostasis in a carnivorous animal (cat) and in rats fed a high-protein diet. Am J Phys 239:R437–R444

    CAS  Google Scholar 

  • Kirby VL, Ortiz CL (1994) Hormones and fuel regulation in fasting elephant seals. In: Le Boeuf BJ, Laws RM (eds) Elephant seals: population ecology, behavior, and physiology. University of California Press, Berkeley, pp 374–386

    Google Scholar 

  • Kooyman GL (1965) Techniques used in measuring diving capacities of Weddell seals. Polar Rec 12:391–394

    Article  Google Scholar 

  • Kooyman GL (1966) Maximum diving capacities of the Weddell seal, (Leptonychotes weddelli). Science 151:1553–1554

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL (1973) Respiratory adaptions in marine mammals. Integr Comp Biol 13:457–468

    Google Scholar 

  • Kooyman GL (1989) Diverse divers: physiology and behavior. Springer, Berlin, p 200

    Book  Google Scholar 

  • Kooyman GL, Campbell WB (1972) Heart rates in freely diving Weddell seals, Leptonychotes weddelli. Comp Biochem Physiol 43A:31–36

    Article  Google Scholar 

  • Kooyman GL, Ponganis PJ (1998) The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol 60:19–32

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL, Kerem DH, Campbell WB, Wright JJ (1971) Pulmonary function in freely diving Weddell seals, Leptonychotes weddelli. Respir Physiol 12:271–282

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL, Wahrenbrock EA, Castellini MA, Davis RW, Sinnett EE (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. J Comp Physiol B 138:335–346

    Article  CAS  Google Scholar 

  • Kooyman GL, Ponganis PJ, Howard RS (1999) Diving animals. In: Lundgren CEG, Miller JN (eds) The lung at depth. Marcel Dekkar Inc., New York, pp 587–614

    Google Scholar 

  • Kvietys PR, Granger DN (1982) Relation between intestinal blood flow and oxygen uptake. Am J Phys 242:G202–G208

    CAS  Google Scholar 

  • Ladd M, Raisz L, Crowder CH, Page LB (1951) Filtration rate and water diuresis in the seal, Phoca vitulina. J Cell Comp Physiol 38:157–164

    Article  CAS  PubMed  Google Scholar 

  • Le Boeuf BJ, Naito BJ, Huntley AC, Asaga T (1989) Prolonged, continuous, deep diving by northern elephant seals. Can J Zool 67:2514–2519

    Article  Google Scholar 

  • Leivestad H, Andersen HT, Scholander PF (1957) Physiological response to air exposure in codfish. Science 126:9

    Article  Google Scholar 

  • Lenfant C (1969) Physiological properties of blood of marine mammals. In: Andersen HT (ed) The biology of marine mammals. Academic Press, New York, pp 65–94

    Google Scholar 

  • Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir Physiol 9:277–286

    Article  CAS  PubMed  Google Scholar 

  • Lestyk KC, Folkow LP, Blix AS, Hammill MO, Burns JM (2009) Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals from birth to maturity. J Comp Physiol B 179:985–996

    Article  CAS  PubMed  Google Scholar 

  • Levey AS, Coresh JC (2012) Chronic kidney disease. Lancet 379:165–180

    Article  PubMed  Google Scholar 

  • Malvin RL, Rayner M (1968) Renal function and blood chemistry in Cetacea. Am J Phys 214:187–191

    Article  CAS  Google Scholar 

  • Marino L, Toren K, LeFebvre L (2006) Does diving limit brain size in cetaceans? Mar Mamm Sci 22:413–425

    Article  Google Scholar 

  • Mathieu O, Krauer R, Hoppeler H, Gehr P, Lindstedt SL, Alexander RM, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass. Respir Physiol 44:113–128

    Article  CAS  PubMed  Google Scholar 

  • McDonald BI, Ponganis PJ (2013) Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions. J Exp Biol 216:3332–3341

    Article  CAS  PubMed  Google Scholar 

  • Meir JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ (2009) Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Phys 297:R927–R939

    CAS  Google Scholar 

  • Mirceta S, Signore AV, Burns JM, Cossins AR, Campbell KL, Berenbrink M (2013) Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340:1303–1311

    Article  CAS  Google Scholar 

  • Mitz SA, Reuss S, Folkow LP, Blix AS, Ramirez JM, Hankeln T, Burmester T (2009) When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience 163:552–560

    Article  CAS  PubMed  Google Scholar 

  • Murdaugh HV, Schmidt-Nielsen B, Wood JW, Mitchell ML (1961) Cessation of renal function during diving in the trained seal (Phoca vitulina). J Cell Comp Physiol 58:261–265

    Article  CAS  PubMed  Google Scholar 

  • Nishizaki T, Ikegami T, Hiroshige S, Hashimoto K, Uchiyama H, Yoshizumi T, Kishikawa K, Shimada M, Sugimachi K (2001) Small graft for living donor liver transplantation. Ann Surg 233:575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noldge-Schomburg GFE, Armbruster K, Kopp KH, Haberstroh J, Fittkau A, Geiger K (1996) Splanchnic O2 uptake remains O2 supply independent during progressive hypoxic hypoxia. Anesthesiology 85:230

    Google Scholar 

  • Noren SR, Williams TM, Pabst DA, McLellan WA, Dearolf JL (2001) The development of diving in marine endotherms: preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. J Comp Physiol B 171:127–134

    Article  CAS  PubMed  Google Scholar 

  • Noren SR, Lacave G, Wells RS, Williams TM (2002) The development of blood oxygen stores in bottlenose dolphins (Tursiops truncatus): implications for diving capacity. J Zool Lond 258:105–113

    Article  Google Scholar 

  • Ortiz R (2001) Osmoregulation in marine mammals. J Exp Biol 204:1831–1844

    CAS  PubMed  Google Scholar 

  • Ortiz RM, Houser DS, Wade CD, Ortiz CL (2003) Hormonal changes associated with the transition between nursing and natural fasting in northern elephant seals (Mirounga angustirostris). Gen Comp Endocrinol 130:78–83

    Article  CAS  PubMed  Google Scholar 

  • Parkos CA, Wahrenbrock EA (1987) Acute effects of hypercapnia and hypoxia on minute ventilation in unrestrained Weddell seals. Respir Physiol 67:197–207

    Article  CAS  PubMed  Google Scholar 

  • Panneton WM (2013) The mammalian diving response: an enigmatic reflex to preserve life? Physiol 28:284–297

    Article  CAS  Google Scholar 

  • Pernia SD, Hill A, Ortiz CL (1980) Urea turnover during prolonged fasting in the northern elephant seal. Comp Biochem Physiol 65:731–734

    Google Scholar 

  • Pernia SD, Costa DP, Ortiz CL (1989) Glomerular filtration rate in weaned elephant seal pups during natural, long term fasts. Can J Zool 67:1752–1756

    Article  Google Scholar 

  • Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, Hankeln T, Burmester T (2002) Neuroglobin and cytoglobin: fresh blood for the vertebrate globin family. EMBO Rep 3:1146–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polasek L, Davis RW (2001) Heterogeneity of myoglobin distribution in the locomotory muscles of five cetacean species. J Exp Biol 204:209–215

    CAS  PubMed  Google Scholar 

  • Polasek L, Dickson KA, Davis RW (2006) Spatial heterogeneity of aerobic and glycolytic enzyme activities and myoglobin concentration in the epaxial swimming muscles of the harbor seal (Phoca vitulina). Am J Phys 290:R1720–R1727

    CAS  Google Scholar 

  • Polasek LK, Frost C, David JHM, Meyer MA, Davis RW (2016) Myoglobin distribution in the locomotory muscles of Cape fur seals (Arctocephalus pusillus pusillus). Aquat Mamm 42:421–427

    Article  Google Scholar 

  • Ponganis PJ (2011) Diving mammals. Compr Physiol 1:517–535

    Google Scholar 

  • Ponganis PJ, Pierce RW (1978) Muscle metabolic profiles and fiber type composition in some marine mammals. Comp Biochem Physiol 59:99–102

    CAS  Google Scholar 

  • Ponganis PJ, Ponganis EP, Ponganis KV, Kooyman GL (1990a) Swimming velocities in otariids. Can J Zool 68:2105–2112

    Article  Google Scholar 

  • Ponganis PJ, Kooyman GL, Zornow MH, Castellini MA, Croll DA (1990b) Cardiac output and stroke volume in swimming harbor seals. J Comp Physiol B 160:473–482

    Article  CAS  PubMed  Google Scholar 

  • Ponganis PJ, Kooyman GL, Zornow MH (1991) Cardiac output in swimming California sea lions, Zalophus californianus. Physiol Zool 64:1296–1306

    Article  Google Scholar 

  • Ponganis PJ, Kooyman GL, Winter LM, Starke LN (1997a) Heart rate and plasma lactate responses during submerged swimming and trained diving in California sea lions, Zalophus californianus. J Comp Physiol B 167:9–16

    Article  CAS  PubMed  Google Scholar 

  • Ponganis PJ, Costello ML, Starke LN, Mathieu-Costello O, Kooyman GL (1997b) Structural and biochemical characteristics of locomotory muscles of emperor penguins, Aptenodytes forsteri. Respir Physiol 109:73–80

    Article  CAS  PubMed  Google Scholar 

  • Ponganis PJ, McDonald BI, Tift MS, Williams CL (2017) Heart rate regulation in diving sea lions: the vagus nerve rules. J Exp Biol 220:1372–1381

    Article  PubMed  Google Scholar 

  • Prewitt JS, Freistroffer DV, Schreer JF, Hammill MO, Burns JM (2010) Postnatal development of muscle biochemistry in nursing harbor seal (Phoca vitulina) pups: limitations to diving behavior? J Comp Physiol B 180:757–766

    Article  CAS  PubMed  Google Scholar 

  • Qvist J, Weber RE, Zapol WM (1981) Oxygen equilibrium properties of blood and hemoglobin of fetal and adult Weddell seals. J Appl Physiol 50:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Qvist J, Hill RD, Schneider RC, Falke KJ, Liggins GC, Guppy M, Elliot RL, Hochachka PW, Zapol WM (1986) Hemoglobin concentrations and blood gas tensions of freediving Weddell seals. J Appl Physiol 61:1560–1569

    Article  CAS  PubMed  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    Article  CAS  PubMed  Google Scholar 

  • Richet C (1899) De la resistance des canards a l’asphyxie. J Physiol Pathol Gen 1:641–650

    Google Scholar 

  • Richmond JP, Burns JM, Rea LD (2006) Ontogeny of total body oxygen stores and aerobic dive potential in Steller sea lions (Eumetopias jubatus). J Comp Physiol B 176:535–545

    Article  PubMed  Google Scholar 

  • Ridgway SH (1972) Homeostasis in the aquatic environment. In: Ridgway SH (ed) Mammals of the sea: biology and medicine. Charles C. Thomas Publisher, Springfield, pp 590–747

    Google Scholar 

  • Ridgway SH, Carder DA, Clark W (1975) Conditioned bradycardia in the sea lion, Zalophus californianus. Nature 256:37–38

    Article  CAS  PubMed  Google Scholar 

  • Ridgway SH, Howard R (1979) Dolphin lung collapse and intramuscular circulation during free diving: evidence from nitrogen washout. Sci 206:1182–1183

    Article  CAS  Google Scholar 

  • Ridgway SH, Johnson DG (1966) Blood oxygen and ecology of porpoises of three genera. Science 151:456–458

    Article  CAS  PubMed  Google Scholar 

  • Roberts S, Samuels LT, Reinecke RM (1943) Previous diet and the apparent utilization of fat in the absence of the liver. Am J Phys 140:639–644

    Article  Google Scholar 

  • Rowell LB (1986) Human circulation regulation during physical stress. Oxford University Press, Oxford, New York, p 415

    Google Scholar 

  • Sapirstein LA (1958) Regional blood by fractional distribution of indicators. Am J Phys 193:161–168

    Article  CAS  Google Scholar 

  • Schagatay E, Van Kampen M, Emanuelsson S, Holm B (2000) Effects of physical and apnea training on apneic time and the diving response in humans. Eur J Appl Physiol 82:161–169

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen B, Murdaugh HV, O’Dell R, Bacsanyj J (1959) Urea excretion and diving in the seal (Phoca vitulina). J Cell Comp Physiol 53:393–412

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology. Cambridge University Press, Cambridge, United Kingdom, pp 617

    Google Scholar 

  • Schneuer M, Flachsbarth S, Czech-Damal NU, Folkow LP, Siebert U, Burmester T (2012) Neuroglobin of seals and whales: evidence for a divergent role in the diving brain. Neuroscience 223:35–44

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hval Skrif, Norske Videnskamp-Akad, Oslo 22:1–131

    Google Scholar 

  • Scholander PF (1963) The master switch of life. Sci Am 209:92–106

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF (1964) Animals in aquatic environments: diving mammals and birds. In: Dill DB, Adolph E, Wiber CG (eds) Handbook of physiology: adaptation to the environment, section 4. Am Physiol Soc, Bethesda, Wiley-Blackwell pp 729–740

    Google Scholar 

  • Scholander PF, Irving L (1941) Experimental investigations on the respiration and diving of the Florida manatee. J Cell Comp Physiol 17:169–191

    Article  CAS  Google Scholar 

  • Scholander PF, Irving L, Grinnell SW (1942) Aerobic and anaerobic changes in seal muscle during diving. J Biol Chem 142:431–440

    CAS  Google Scholar 

  • Schwarze K, Burmester T (2013) Conservation of globin genes in the “living fossil” Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family. Biochim Biophys Acta 1834:801–1812

    Google Scholar 

  • Scott W, Stevens J, Binder-Macleod SA (2001) Human skeletal muscle fiber type classifications. Phys Ther 81:1810–1816

    CAS  PubMed  Google Scholar 

  • Shero MR, Andrews RD, Lestyk KC, Burns JM (2012) Development of the aerobic dive limit and muscular efficiency in northern fur seals (Callorhinus ursinus). J Comp Physiol B 182:425–436

    Article  CAS  PubMed  Google Scholar 

  • Sierra E, Fernández A, Espinosa de los monteros A, Díaz-Delgado J, Bernaldo de Quirós Y, García-Álvarez N, Arbelo M, Herráez P (2015) Comparative histology of muscle in free ranging cetaceans: shallow versus deep diving species. Sci Rep – Nature 5:15909

    CAS  Google Scholar 

  • Sinnett EE, Kooyman GL, Wahrenbrock EA (1978) Pulmonary circulation of the harbor seal. J Appl Physiol 45:718–727

    Article  CAS  PubMed  Google Scholar 

  • Snyder GK (1983) Respiratory adaptations in diving mammals. Respir Physiol 54:269–294

    Article  CAS  PubMed  Google Scholar 

  • Soini HO, Takala J, Nordin AJ, Makisalo HJ, Hockerstedt KAV (1992) Peripheral and liver tissue oxygen tensions in hemorrhagic shock. Crit Care Med 20:1330–1334

    Article  CAS  PubMed  Google Scholar 

  • Spence-Bailey LM, Verrier D, Arnould JPY (2007) The physiological and behavioural development of diving in Australian fur seal (Arctocephalus pusillus doriferus) pups. J Comp Physiol B 177:483–494

    Article  CAS  PubMed  Google Scholar 

  • Staron RS (1997) Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol 22:307–327

    Article  CAS  PubMed  Google Scholar 

  • Staron RS, Hikida RS, Murray TF, Hagerman FC, Hagerman MY (1989) Lipid depletion and repletion in skeletal muscle following a marathon. J Neurol Sci 94:29–40

    Article  CAS  PubMed  Google Scholar 

  • Stellingwerff T, Boon H, Jonkers RAM, Senden JM, Spriet LL, Koopman R, van Loon LJC (2007) Significant intramyocellular lipid use during prolonged cycling in endurance trained males as assessed by three different methodologies. Am J Physiol Endocrinol Metab 292:E1715–E1723

    Article  CAS  PubMed  Google Scholar 

  • Storz JF, Opazo JC, Hoffmann FG (2013) Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenet Evol 66:469–478

    Article  CAS  PubMed  Google Scholar 

  • Sun YB, Zhou WP, Liu HQ, Irwin DM, Shen YY, Zhang YP (2013) Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins. Genome Biol Evol 5:130–139

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Fuwa H (1970) Influence of dietary composition on the capacity of glucose formation in the liver of rats. Agric Biol Chem 34:80–87

    Article  CAS  Google Scholar 

  • Taylor CR, Heglund NC, McMahon TA, Looney TR (1980) Energetic cost of generating muscular force during running. J Exp Biol 86:9–18

    Google Scholar 

  • Thometz NM, Murray MJ, Williams TM (2015) Ontogeny of oxygen storage capacity and diving ability in the southern sea otter (Enhydra lutris nereis): costs and benefits of large lungs. Physiol Biochem Zool. 88:311–327.

    Article  PubMed  Google Scholar 

  • Thompson D, Fedak MA (1993) Cardiac responses of grey seals during diving at sea. J Exp Biol 174:139–164

    CAS  PubMed  Google Scholar 

  • Thornton SJ, Spielman DM, Pelc NJ, Block WF, Crocker DE, Costa DP, Le Boeuf BJ, Hochachka PW (2001) Effects of forced diving on the spleen and hepatic sinus in northern elephant seal pups. Proc Natl Acad Sci 98:9413–9418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tift MS, Houser DS, Crocker DE (2011) High-density lipoprotein remains elevated despite reductions in total cholesterol in fasting adult male elephant seals (Mirounga angustirostris). Comp Biochem Physiol B 159:214–219

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Medina JP, Zenteno-Savín T, Elsner R, Ortiz RM (2012) Coping with physiological oxidative stress: a review of antioxidant strategies in seals. J Comp Physiol B 182:741–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Videler J, Kamermans P (1985) Differences between upstroke and downstroke in swimming dolphins. J Exp Biol 119:265–274

    CAS  PubMed  Google Scholar 

  • Viscarra JA, Champagne CD, Crocker DE, Ortiz RM (2011) 5’AMP-activated protein kinase activity is increased in adipose tissue of northern elephant seal pups during prolonged fasting-induced insulin resistance. J Endocrinol 209:317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner PD (1991) Central and peripheral aspects of oxygen transport and adaptations with exercise. Sports Med 11:133–142

    Article  CAS  PubMed  Google Scholar 

  • Watson RR, Miller TA, Davis RW (2003) Immunohistochemical fiber typing of harbor seal skeletal muscle. J Exp Biol 206:4105–4111

    Article  PubMed  Google Scholar 

  • Watson RR, Miller TA, Davis RW (2007) Mitochondrial volume density and distribution in harbor seal skeletal muscle. J Comp Physiol B 177:89–98

    Article  PubMed  Google Scholar 

  • White FN, Ikeda M, Elsner RW (1973) Adrenergic innervation of lare arteries of the seal. Comp Gen Pharmac 4:271–276

    Article  CAS  Google Scholar 

  • Wilford DC, Gray AT, Hempleman SC, Davis RW, Hill ER (1990) Temperature and the oxygen-hemoglobin dissociation curve of the harbor seal, (Phoca vitulina). Respir Physiol 79:137–144

    Article  Google Scholar 

  • Williams TM (1983) Locomotion in the North American mink, a semi-aquatic mammal. II. The effect of an elongate body on running energetics and gait patterns. J Exp Biol 105:283–295

    CAS  PubMed  Google Scholar 

  • Williams TM, Kooyman GL, Croll DA (1991) The effect of submergence on heart rate and oxygen consumption of swimming seals and sea lions. J Comp Physiol B 160:637–644

    Article  CAS  PubMed  Google Scholar 

  • Williams TM, Fuiman LA, Horning M, Davis RW (2004) The cost of foraging by a marine predator, the Weddell seal Leptonychotes weddellii: pricing by the stroke. J Exp Biol 207:973–982

    Article  PubMed  Google Scholar 

  • Williams TM, Zavanelli M, Miller MA, Goldbeck RA, Morledge M, Casper D, Pabst DA, McLellan W, Cantin LP, Kliger DS (2008) Running, swimming and diving modifies neuroprotecting globins in the mammalian brain. Proc Biol Sci 275:751–758

    Article  CAS  PubMed  Google Scholar 

  • Williams TM, Bengston P, Steller DL, Croll DA Davis RW (2015a) The healthy heart: lessons from nature’s elite athletes. Physiologist 30:349–357

    CAS  Google Scholar 

  • Williams TM, Fuiman L, Kendall T, Berry P, Richter B, Noren S, Shattock M, Farrell E, Stamper AM, Davis RW (2015b) Exercise intensity and depth alter bradycardia in deep-sea diving marine mammals. Nature Com 6:6055

    Google Scholar 

  • Williams TM, Blackwell SB, Richter B, Sinding MHS, Heide-Jørgensen MP (2017) Paradoxical escape responses by narwhals (Monodon monoceros). Science 358:1328–1331

    Article  CAS  PubMed  Google Scholar 

  • Wolt R, Gelwick FP, Weltz F, Davis RW (2012) Foraging behavior and prey preference of sea otters (Enhydra lutris kenyoni) in a predominantly soft sediment habitat in Alaska. Mamm Biol 77:271–280

    Article  Google Scholar 

  • Worthy GAJ, Hickie JP (1986) Relative brain size in marine mammals. Am Nat 128:445–459

    Article  Google Scholar 

  • Worthy GAJ, Lavigne DM (1987) Mass loss, metabolic rate, and energy utilization by harp and grey seals during the postweaning fast. Physiol Zool 60:352–364

    Article  Google Scholar 

  • Wright TJ, Davis RW (2006) The effect of myoglobin concentration on aerobic dive limit in a Weddell seal. J Exp Biol 209:2576–2585

    Article  CAS  PubMed  Google Scholar 

  • Wright T, Davis RW (2015) Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals. J Exp Biol 218:2180–2189

    Article  PubMed  Google Scholar 

  • Yeates LC, Williams TM, Fink TL (2007) Diving and foraging energetics of the smallest marine mammal, the sea otter (Enhydra lutris). J Exp Biol 210:1960–1970

    Article  PubMed  Google Scholar 

  • Yim H-S, Cho YS, Guang X, Kang SG, Jeong J-Y, Cha S-S, Oh H-M et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46:88–92

    Article  CAS  PubMed  Google Scholar 

  • Zapol WM, Liggins GC, Schneider RC, Qvist J, Snider MT, Creasy RK, Hochachka PW (1979) Regional blood flow during simulated diving in the conscious Weddell seal. J Appl Physiol 47:968–973

    Article  CAS  PubMed  Google Scholar 

  • Zapol WM, Hill RD, Qvist J, Falke K, Schneider RC, Liggins GC, Hochachka PW (1989) Arterial gas tensions and hemoglobin concentrations of the freely diving Weddell seal. Undersea Biomed Res 16:363–373

    CAS  PubMed  Google Scholar 

  • Zenteno-Savín T, Clayton-Hernandez E, Elsner R (2002) Diving seals: are they a model for coping with oxidative stress? Comp Biochem Physiol C 133:527–536

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, R.W. (2019). Physiological Adaptations for Breath-Hold Diving. In: Marine Mammals. Springer, Cham. https://doi.org/10.1007/978-3-319-98280-9_6

Download citation

Publish with us

Policies and ethics