Skip to main content

Abstract

A PCM is a substance composed for molecules. The principle of the PCM is simple. As the temperature increases, the material changes phase from solid to liquid. The reaction being endothermic, the PCM absorbs the heat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Vaz Sá, Sustentabilidade na construção: comportamento térmico de edifícios em Portugal usando materiais de mudança de fase. Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto—FEUP, 2013. (in Portuguese)

    Google Scholar 

  2. R. Baetens, B.P. Jelle, A. Gustavsen, Phase change materials for building applications: a state-of-the-art review. Energy Build. 1361–1368 (2010)

    Google Scholar 

  3. H. Johra, P. Heiselberg, Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: a review. Renew. Sustain. Energy Rev. 19–32, 2017

    Google Scholar 

  4. F. Agyenim, N. Hewitt, P. Eames, M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 14, 615–628 (2010)

    Article  Google Scholar 

  5. C. Santos. A.P., L. Matias, Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edifícios. ICT Informações Cientificas e Técnicas, Edifícios - Ite 50, Edited by Laboratório Nacional de Engenharia Civil. LNEC, Lisboa (2007)

    Google Scholar 

  6. A. Castilho, Simulação numérica do efeito de PCM no comfort térmico de edifícios – caso de estudo da FEUP. MSc. Thesis, Faculdade de Engenharia da Universidade do Porto - FEUP (2014). (in Portuguese)

    Google Scholar 

  7. J. Aguiar, S. Cunha, M. Kheradmand, Phase Change Materials: Contribute to Sustainable Construction (2014)

    Google Scholar 

  8. V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art. Renew. Sustain. Energy 11, 1146–1166 (2007)

    Article  Google Scholar 

  9. P.J.S.M. Coelho, Tabelas De Termodinâmica Documentos Técnicos (FEUP edições, Porto, 2007)

    Google Scholar 

  10. M. Telkes, Trombe Wall with Phase Change Storage Material (1978)

    Google Scholar 

  11. S. Scalat, D. Banu, D. Hawes, J. Paris, F. Haghighata, D. Feldman, Full scale thermal testing of latent heat storage in wallboard. Solar Energy Mater Solar Cells 44, 49–61 (1996)

    Article  Google Scholar 

  12. M. Telkes, Thermal Energy Storage in Salt Hydrates (1980), pp. 381–393

    Google Scholar 

  13. A.I. Fernandez, M. Martinez, M. Segarra, I. Martorell, L.F. Cabeza, Selection of materials with potential in sensible thermal energy storage. Sol. Energy Mater. Sol. Cells 94, 1723–9, (2010)

    Google Scholar 

  14. B. Farouk, S.I. Guceri, Tromb–Michal Wall Using a Phase Change Material (1979)

    Google Scholar 

  15. M. Telkes, Thermal Storage for Solar Heating and Cooling (1975)

    Google Scholar 

  16. C.J. Swet, Phase Change Storage in Passive Solar Architecture (1980), pp. 282–286

    Google Scholar 

  17. A.A. Ghoneim, S.A. Kllein, J.A. Duffie, Analysis of Collector—Storage Building Walls Using Phase Change Materials (1991), pp. 237–242

    Google Scholar 

  18. S. Chandra, R. Kumar, S. Kaushik, S. Kaul, Thermal Performance of a Non-A/C Building with PCM Thermal Storage Wall (1985), pp. 15–20

    Google Scholar 

  19. H. Mehling, L.F. Cabeza, M. Yamaha, Phase Change Materials: Application Fundamentals. Thermal Energy Storage for Sustainable Energy Consumption (Springer, Berlin, 2007)

    Google Scholar 

  20. J. Kósny, PCM-Enhanced Building Components: An Application of Phase Change Materials in Building Envelopes and Internal Structures (Springer, Berlin, 2015)

    Google Scholar 

  21. V.V. Tyagi, D. Buddi, Thermal Cycling Testing of Calcium Chloride Hexahydrate as a possible PCM for Latent Heat Storage (2008), pp. 891–899

    Google Scholar 

  22. G. Lane, Latent Heat Materials, vol. 1 (CRC Press, Boca Raton, FL, 1983)

    Google Scholar 

  23. M. Kenisarin, K. Mahkamov, Solar energy storage using phase change materials. Renew. Sustain. Energy Rev. 11, 1913–1965 (2007)

    Article  Google Scholar 

  24. P. Verma, Varun, S.K. Singal, Review of mathematical modeling on latent heat thermal en-ergy storage systems using phase-change material. Renew. Sustain. Energy Rev. 12, 999–1031 (2008)

    Google Scholar 

  25. B. Zalba, J.M. Marı́n, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003)

    Google Scholar 

  26. M.K. Rathod, J. Banerjee, Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew. Sustain. Energy Rev. 246–258 (2016)

    Google Scholar 

  27. S.D. Sharma, D. Buddhi, R.L. Sawhney, Accelerated thermal cycle test of latent heat storage materials. Sol. Energy 66, 483–490 (1999)

    Article  Google Scholar 

  28. Y. Yuan, N. Zhang, W. Tao, X. Cao, Y. He, Fatty acids as phase change materials: a review. Renew. Sustain. Energy Rev. 482–498 (2014)

    Google Scholar 

  29. R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conserv. Manage. 193–228 (2015)

    Google Scholar 

  30. L.F. Cabeza, A. Castell, C. Barreneche, A. de Garcia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings: a review. Renew. Sustain. Energy Rev. 1675–1695 (2011)

    Google Scholar 

  31. E. Rodriguez-Ubinas, L. Ruiz-Valero, S. Vega, J. Neila, Applications of phase change material in highly energy-efficient houses. Energy Build 50, 49–62 (2012)

    Article  Google Scholar 

  32. N.S.A. Silva, Simulação numérica da influência da interface no fenómeno da hu-midade ascensional - Wufi 2D (Faculdade de Engenharia da Universidade do Porto, Dissertação de Mestrado, 2013)

    Google Scholar 

  33. M.N.A. Hawlader, M.S. Uddin, M.M. Khin. Microencapsulated PCM Thermal-Energy Storage System, pp. 195–202 (2003)

    Google Scholar 

  34. U. Stritih, P. Novak, Solar Heat Storage Wall for Building Ventilation, pp. 268–271 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. P. Q. Delgado .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delgado, J.M.P.Q., Martinho, J.C., Vaz Sá, A., Guimarães, A.S., Abrantes, V. (2019). Introduction. In: Thermal Energy Storage with Phase Change Materials. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-97499-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97499-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97498-9

  • Online ISBN: 978-3-319-97499-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics