Skip to main content

The Impact of Centrosome Pathologies on Prostate Cancer Development and Progression

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1095))

Abstract

The significant role of centrosomes in cancer cell proliferation has been well recognized (reviewed in Schatten H, Histochem Cell Biol 129:667–86 (2008); Schatten H, Sun Q-Y, Microsc Microanal 17(4):506–512 (2011); Schatten H, Sun Q-Y, Reprod Fertil Dev. https://doi.org/10.1071/RD14493 (2015a); Schatten H, Sun Q-Y, Centrosome-microtubule interactions in health, disease, and disorders. In: Schatten H (ed) The cytoskeleton in health and disease. Springer Science+Business Media, New York (2015b)) and new research has generated new interest and new insights into centrosomes as potential targets for cancer-specific therapies. The centrosome is a key organelle serving multiple functions through its primary functions as microtubule organizing center (MTOC) that is also an important communication center for processes involved in cellular regulation; transport to and away from centrosome-organized microtubules along microtubules is essential for cellular activities including signal transduction and metabolic activities. New research on cancer cell centrosomes has generated new insights into centrosome dysfunctions in cancer cells in which centrosome phosphorylation, balance of centrosomal proteins, centrosome regulation and duplication are impaired. Among the hallmarks of cancer cells are multipolar spindles or abnormal bipolar spindles that are formed as a result of centrosome protein expression imbalances, abnormalities in centrosome structure and abnormalities in clustering of centrosomal components that are critical for bipolar mitotic apparatus formation. Centrosome abnormalities in cancer cells can be the result of multiple factors including environmental influences and toxicants that can affect centrosome functions by inducing centrosome pathologies leading to abnormal cancer cell proliferation. These topics are addressed in this review with focus on prostate-specific therapy strategies to target centrosome abnormalities. We will also address loss of cell polarity in cancer cells in which centrosome dysfunctions play a role as well as the loss of primary cilia in prostate cancer development and progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alvarez Sedó CA, Schatten H, Combelles C, Rawe VY (2011) The nuclear mitotic apparatus protein NuMA: localization and dynamics in human oocytes, fertilization and early embryos. Mol Hum Reprod 17(6):392–398. https://doi.org/10.1093/molehr/gar009

    Article  CAS  PubMed  Google Scholar 

  2. Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19:R526–R535

    Article  CAS  Google Scholar 

  3. Boutros R (2012) Regulation of centrosomes by cyclin-dependent kinases. In: Schatten H (ed) The centrosome, Chap 11. Springer Science and Business Media, New York

    Google Scholar 

  4. Can A, Semiz O, Cinar O (2005) Bisphenol-a induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis. Mol Hum Reprod 11:389–396

    Article  CAS  Google Scholar 

  5. Carroll E, Okuda M, Horn HF, Biddinger P, Stambrook PJ, Gleich LL, Li YQ, Tarapore P, Fukasawa K (1999) Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18:1935–1944

    Article  CAS  Google Scholar 

  6. Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F (2005) Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res 7:R788–R795

    Article  CAS  Google Scholar 

  7. Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7:1122–1144

    Article  CAS  Google Scholar 

  8. Cheung CH, Coumar MS, Chang JY, Hsieh HP (2011) Aurora kinase inhibitor patents and agents in clinical testing: an update (2009–10). Expert Opin Ther Pat 21:857–884

    Article  CAS  Google Scholar 

  9. D’Angelo A, Franco B (2009) The dynamic cilium in human diseases. PathoGenetics 2(3):1–15

    Google Scholar 

  10. Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289:F1159–F1169

    Article  CAS  Google Scholar 

  11. De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A 78:5608–5612

    Article  Google Scholar 

  12. Dictenberg J, Zimmerman W, Sparks C, Young A, Vidair C, Zheng Y, Carrington W, Fay F, Doxsey SJ (1998) Pericentrin and gamma tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol 141:163–174

    Article  CAS  Google Scholar 

  13. Dimitriadis I, Katsaros C, Galatis B (2001) The effect of taxol on centrosome function and microtubule organization in apical cells of Sphacelaria rigidula (Phaeophyceae). Phycol Res 49:23–34

    Article  CAS  Google Scholar 

  14. Donohue KM, Miller RL, Perzanowski MS, Just AC, Hoepner LA et al (2013) Prenatal and postnatal bisphenol a exposure and asthma development among inner-city children. J Allergy Clin Immunol 131:736–742

    Article  CAS  Google Scholar 

  15. Doxsey SJ, Stein P, Evans L, Calarco P, Kirschner M (1994) Pericentrin, a highly conserved protein of centrosomes involved in microtubule organization. Cell 76:639–650

    Article  CAS  Google Scholar 

  16. Ehrlich S, Williams PL, Missmer SA, Flaws JA, Ye X et al (2012) Urinary bisphenol a concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod 27:3583–3592

    Article  CAS  Google Scholar 

  17. Eichenlaub-Ritter U, Vogt E, Cukurcam S, Sun F, Pacchierotti F, Parry J (2008) Exposure of mouse oocytes to bisphenol a causes meiotic arrest but not aneuploidy. Mutat Res 651:82–92

    Article  CAS  Google Scholar 

  18. Fisk HA (2012) Many pathways to destruction: the centrosome and its control by and role in regulated proteolysis. In: Schatten H (ed) The centrosome, Chap 8. Springer Science and Business Media, New York

    Google Scholar 

  19. Fukasawa K (2012) Molecular links between centrosome duplication and other cell cycle associated events. In: Schatten H (ed) The centrosome, Chap 10. Springer Science and Business Media, New York

    Google Scholar 

  20. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271:1744–1747

    Article  CAS  Google Scholar 

  21. Gillingham AK, Munro S (2000) The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1:524–529

    Article  CAS  Google Scholar 

  22. Hassounah NB, Bunch TA, McDermott KM (2012) Molecular pathways: the role of primary cilia in Cancer progression and therapeutics with a focus on hedgehog signaling. Clin Cancer Res 18(9):2429–2435

    Article  CAS  Google Scholar 

  23. Haycraft CJ, Banizs B, Aydin-Son Y et al (2005) Gli2 and gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53

    Article  Google Scholar 

  24. Hildebrandt F, Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6:928–940

    Article  CAS  Google Scholar 

  25. Ho YS, Duh JS, Jeng JH, Wang YJ, Liang YC, Lin CH, Tseng CJ, Yu CF, Chen RJ, Lin JK (2001) Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. Int J Cancer 91:393–401

    Article  CAS  Google Scholar 

  26. Ho SM, Tang WY, de Belmonte FJ, Prins GS (2006) Developmental exposure to estradiol and bisphenol a increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    Article  CAS  Google Scholar 

  27. Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, Izawa I, Inagaki M (2012) Trichoplein and aurora a block aberrant primary cilia assembly in proliferating cells. J Cell Biol 197(3):391–405

    Article  CAS  Google Scholar 

  28. Jechlinger M, Sommer A, Moriggl R et al (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116:1561–1570

    Article  CAS  Google Scholar 

  29. Jenkins S, Wang J, Eltoum I, Desmond R, Lamartiniere CA (2011) Chronic oral exposure to bisphenol a results in a nonmonotonic dose response in mammary carcinogenesis and metastasis in MMTV-erbB2 mice. Environ Health Perspect 119:1604–1609

    Article  CAS  Google Scholar 

  30. Kais Z, Parvin JD (2012) Centrosome regulation and breast cancer. In: Schatten H (ed) The centrosome, Chap 14. Springer Science and Business Media, New York

    Google Scholar 

  31. Kammerer S, Roth RB, Hoyal CR, Reneland R, Marnellos G, Kiechle M, Schwarz-Boeger U, Griffiths LR, Ebner F, Rehbock J, Cantor CR, Nelson MR, Brown A (2005) Association of the NuMA region on chromosome 11q13 with breast cancer susceptibility. Proc Natl Acad Sci U S A 102(6):2004–2009

    Article  CAS  Google Scholar 

  32. Kasper M, Regl G, Frischauf AM, Aberger F (2006) GLI transcription factors: mediators of oncogenic hedgehog signalling. Eur J Cancer 42:437–445

    Article  CAS  Google Scholar 

  33. Keri RA, Ho SM, Hunt PA, Knudsen KE, Soto AM et al (2007) An evaluation of evidence for the carcinogenic activity of bisphenol a. Reprod Toxicol 24:240–252

    Article  CAS  Google Scholar 

  34. Korzeniewski N, Duensing S (2012) Disruption of centrosome duplication control and induction of mitotic instability by the high-risk human papillomavirus oncoproteins E6 and E7. In: Schatten H (ed) The centrosome, Chap 12. Springer Science and Business Media, New York

    Google Scholar 

  35. Korzeniewski N, Wheeler S, Chatterjee P et al (2010) A novel role of the aryl hydrocarbon receptor (AhR) in centrosome amplification – implications for chemoprevention. Mol Cancer 9:153

    Article  Google Scholar 

  36. Krämer A, Anderhub S, Maier B (2012) Mechanisms and consequences of centrosome clustering in cancer cells. In: Schatten H (ed) The centrosome, Chap 17. Springer Science and Business Media, New York

    Google Scholar 

  37. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M et al (2008) Association of urinary bisphenol a concentration with medical disorders and laboratory abnormalities in adults. JAMA 300:1303–1310

    Article  CAS  Google Scholar 

  38. Leber B, Maier B, Fuchs F, Chi J, Riffel P, Anderhub S, Wagner L, Ho AD, Salisbury JL, Boutros M, Krämer A (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2(33 33ra38):1–11

    Google Scholar 

  39. Levy YY, Lai EY, Remillard SP, Heintzelman MB, Fulton C (1996) Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. Cell Motil Cytoskeleton 33:298–323

    Article  CAS  Google Scholar 

  40. Li Y, Hu J (2015) Small GTPases act as cellular switches in the context of cilia. In: Schatten H (ed) The cytoskeleton in health and disease. Springer Science and Business Media, New York

    Google Scholar 

  41. Li Y, Lu W, Chen D, Boohaker RJ, Zhai L, Padmalayam I, Wennerberg K, Xu B, Zhang W (2015) KIFC1 is a novel potential therapeutic target for breast cancer. Cancer Biol Ther 16:1316–1322

    Article  CAS  Google Scholar 

  42. Ling H, Peng L, Seto E, Fukasawa K (2012) Suppression of centrosome duplication and amplification by deacetylases. Cell Cycle 11:3779–3791

    Article  CAS  Google Scholar 

  43. Lingle WL, Salisbury JL (1999) Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 155:1941–1951

    Article  CAS  Google Scholar 

  44. Lingle WL, Salisbury JL (2000) The role of the centrosome in the development of malignant tumors. Curr Top Dev Biol 49:313–329

    Article  CAS  Google Scholar 

  45. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A 95:2950–2955

    Article  CAS  Google Scholar 

  46. Liu Q, Zhang Y, Jernigan D, Fatatis A (2011) Survival and growth of prostate Cancer cells in the bone: role of the alpha-receptor for platelet-derived growth factor in supporting early metastatic foci. In: Fatatis A (ed) Signaling pathways and molecular mediators in metastasis. Springer, Dordrecht

    Google Scholar 

  47. Lutz W, Lingle WL, McCormick D, Greenwood TM, Salisbury JL (2001) Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 276:20774–20780

    Article  CAS  Google Scholar 

  48. Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Reprod 72:2–13

    Article  CAS  Google Scholar 

  49. Marchetti F, Mailhes JB, Bairnsfather L, Nandy I, London SN (1996) Dose-response study and threshold estimation of griseofulvin induced aneuploidy during female mouse meiosis I and II. Mutagenesis 11:195–200

    Article  CAS  Google Scholar 

  50. Merdes A, Cleveland DA (1998) The role of NuMA in the interphase nucleus. J Cell Sci 111:71–79

    CAS  PubMed  Google Scholar 

  51. Miao Y-L, Kikuchi K, Sun Q-Y, Schatten H (2009a) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Human Reprod Update 15(5):573–585

    Article  Google Scholar 

  52. Miao Y-L, Sun Q-Y, Zhang X, Zhao J-G, Zhao M-T, Spate L, Prather RS, Schatten H (2009b) Centrosome abnormalities during porcine oocyte aging. Environ Mol Mutagen 50(8):666–671

    Article  CAS  Google Scholar 

  53. Michaud EJ, Yoder BK (2006) The primary cilium in cell signaling and cancer. Cancer Res 66:6463–6467

    Article  CAS  Google Scholar 

  54. Mittal K, Choi DH, Klimov S, Pawar S, Kaur R, Mitra AK, Gupta MV, Sams R, Cantuaria G, Rida PCG, Aneja R (2016) A centrosome clustering protein, KIFC1, predicts aggressive disease course in serous ovarian adenocarcinomas. J Ovarian Res 9(17):1–11

    Google Scholar 

  55. Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113:3013–3023

    CAS  PubMed  Google Scholar 

  56. Olivero OA (2012) Centrosomal amplification and related abnormalities induced by nucleoside analogs. In: Schatten H (ed) The centrosome, Chap 16. Springer Science and Business Media, New York

    Google Scholar 

  57. Pacchierotti F, Ranaldi R, Eichenlaub-Ritter U, Attia S, Adler ID (2008) Evaluation of aneugenic effects of bisphenol a in somatic and germ cells of the mouse. Mutat Res 651(1–2):64–70

    Article  CAS  Google Scholar 

  58. Pan J, Snell W (2007) The primary cilium: keeper of the key to cell division. Cell 129:1255–1257

    Article  CAS  Google Scholar 

  59. Panda D, Rathinasamy K, Santra MK, Wilson L (2005) Kinetic suppression of microtubule dynamic instability by griseofulvin: implications for its possible use in the treatment of cancer. Proc Natl Acad Sci U S A 102:9878–9883

    Article  CAS  Google Scholar 

  60. Prins GS, Ye SH, Birch L, Ho SM, Kannan K (2011) Serum bisphenol a pharmacokinetics and prostate neoplastic responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reprod Toxicol 31:1–9

    Article  CAS  Google Scholar 

  61. Prosser SL, Fry AM (2012) Regulation of the centrosome cycle by protein degradation. In: Schatten H (ed) The centrosome, Chap 9. Springer Science and Business Media, New York

    Google Scholar 

  62. Quarmby LM, Parker JDK (2005) Cilia and the cell cycle? J Cell Biol 169(5):707–710

    Article  CAS  Google Scholar 

  63. Rebacz B, Larsen TO, Clausen MH, Ronnest MH, Loffler H, Ho AD, Krämer A (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67:6342–6350

    Article  CAS  Google Scholar 

  64. Saladino C, Bourke E, Morrison CG (2012) Centrosomes, DNA damage and aneuploidy. In: Schatten H (ed) The centrosome, Chap 13. Springer Science and Business Media, New York

    Google Scholar 

  65. Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7:39–45

    Article  CAS  Google Scholar 

  66. Salisbury JL (2004) Centrosomes: Sfi1p and centrin unravel a structural riddle. Curr Biol 14:R27–R29

    Article  CAS  Google Scholar 

  67. Salisbury JL, Suino KM, Busby R, Springett M (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12:1287–1292

    Article  CAS  Google Scholar 

  68. Saredi A, Howard L, Compton DA (1997) Phosphorylation regulates the assembly of NuMA in a mammalian mitotic extract. J Cell Sci 110:1287–1297

    CAS  PubMed  Google Scholar 

  69. Satir P, Christensen ST (2008) Structure and function of mammalian cilia. Histochem Cell Biol 129:687–693

    Article  CAS  Google Scholar 

  70. Schatten H (1977) Untersuchungen über die Wirkung von Griseofulvin in Seeigeleiern und in Mammalierzellen. Universität Heidelberg; 1977 (Effects of griseofulvin on sea urchin eggs and on mammalian cells. University of Heidelberg)

    Google Scholar 

  71. Schatten H (2008) The mammalian centrosome and its functional significance. Histochem Cell Biol 129:667–686

    Article  CAS  Google Scholar 

  72. Schatten H (2013) Chapter 12: The impact of centrosome abnormalities on breast Cancer development and progression with a focus on targeting centrosomes for breast Cancer therapy. In: Schatten H (ed) Cell and molecular biology of breast Cancer. Springer Science and Business Media, LLC, Ney York

    Chapter  Google Scholar 

  73. Schatten H (2014) Chapter 12: The role of centrosomes in cancer stem cell functions. In: Schatten H (ed) Cell and molecular biology and imaging of stem cells, 1st edn. Wiley, Hoboken, pp 259–279

    Google Scholar 

  74. Schatten H, Sun QY (2009) The functional significance of centrosomes in mammalian meiosis, fertilization, development, nuclear transfer, and stem cell differentiation. Environ Mol Mutagen 50(8):620–636

    Article  CAS  Google Scholar 

  75. Schatten H, Sun Q-Y (2011) The significant role of centrosomes in stem cell division and differentiation. Microsc Microanal 17(4):506–512 Epub 2011 Jul 11

    Article  CAS  Google Scholar 

  76. Schatten H, Sun Q-Y (2015a) Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders. Reprod Fertil Dev. https://doi.org/10.1071/RD14493 [Epub ahead of print]. PMID: 25903261

    Article  CAS  Google Scholar 

  77. Schatten H, Sun Q-Y (2015b) Centrosome-microtubule interactions in health, disease, and disorders. In: Schatten H (ed) The cytoskeleton in health and disease. Springer, Science+Business Media New York

    Chapter  Google Scholar 

  78. Schatten G, Schatten H, Bestor T, Balczon R (1982a) Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs. J Cell Biol 94:455–465

    Article  CAS  Google Scholar 

  79. Schatten H, Schatten G, Petzelt C, Mazia D (1982b) Effects of griseofulvin on fertilization and early development of sea urchins. Independence of DNA synthesis, chromosome condensation, and cytokinesis cycles from microtubule-mediated events. Eur J Cell Biol 27:74–87

    CAS  PubMed  Google Scholar 

  80. Schatten H, Wiedemeier A, Taylor M, Lubahn D, Greenberg NM, Besch-Williford C, Rosenfeld C, Day K, Ripple M (2000) Centrosomes-centriole abnormalities are markers for abnormal cell divisions and cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) model. Biol Cell 92:331–340

    Article  CAS  Google Scholar 

  81. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  CAS  Google Scholar 

  82. Schneider L, Clement CA, Teilmann SC et al (2005) PDGFR alpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15:1861–1866

    Article  CAS  Google Scholar 

  83. Schoffski P (2009) Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist 14:559–570

    Article  CAS  Google Scholar 

  84. Sharma N, Berbari NF, Yoder BK (2008) Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 85:371–427

    Article  CAS  Google Scholar 

  85. Ślusarz A, Shenouda NS, Sakla MS, Drenkhahn SK, Narula AS, MacDonald RS, Besch-Williford CL, Lubahn DB (2010) Common botanical compounds inhibit the hedgehog signaling pathway in prostate Cancer. Cancer Res 70(8):3382–3390

    Article  Google Scholar 

  86. Sun QY, Schatten H (2006) Multiple roles of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Front Biosci 11:1137–1146

    Article  CAS  Google Scholar 

  87. Sun Q-Y, Schatten H (2007) Centrosome inheritance after fertilization and nuclear transfer in mammals. In: Sutovsky P (ed) Somatic cell nuclear transfer, Landes bioscience. Adv Exp Med Biol 591:58–71

    Google Scholar 

  88. Tang WY, Morey LM, Cheung YY, Birch L, Prins GS et al (2012) Neonatal exposure to estradiol/bisphenol a alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life. Endocrinology 153:42–55

    Article  CAS  Google Scholar 

  89. Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho S-M (2014) Exposure to Bisphenol a correlates with early-onset prostate Cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One 9(3):e90332 https://doi.org/10.1371/journal.pone.0090332

    Article  Google Scholar 

  90. Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111:39–53

    Article  Google Scholar 

  91. Wehland J, Herzog W, Weber K (1977) Interaction of griseofulvin with microtubules, microtubule protein and tubulin. J Mol Biol 111:329–342

    Article  CAS  Google Scholar 

  92. Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73–81

    Article  CAS  Google Scholar 

  93. Xiao Y-X, Yang W-X (2016) KIFC1: a promising chemotherapy target for cancer treatment? Oncotarget 7(30):48656–48670

    PubMed  PubMed Central  Google Scholar 

  94. Yan B, Chng W-J (2012) The role of centrosomes in multiple myeloma. In: Schatten H (ed) The centrosome, Chap 15. Springer Science and Business Media, New York

    Google Scholar 

  95. Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey SJ (2000) Cytoplasmic dynein-mediated assembly of pericentrin and γ tubulin onto centrosomes. Mol Biol Cell 11:2047–2056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Schatten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schatten, H., Ripple, M.O. (2018). The Impact of Centrosome Pathologies on Prostate Cancer Development and Progression. In: Schatten, H. (eds) Cell & Molecular Biology of Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1095. Springer, Cham. https://doi.org/10.1007/978-3-319-95693-0_4

Download citation

Publish with us

Policies and ethics