Skip to main content

Review of Commutative Algebra

  • Chapter
  • First Online:
Book cover Binomial Ideals

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 279))

  • 2449 Accesses

Abstract

In this chapter we recall basis concepts from commutative algebra which are relevant for the subjects treated in the later chapters. We begin with a review on graded rings, Hilbert functions, and Hilbert series, and introduce the multiplicity and the a-invariant of a graded module. The Krull dimension of a graded module will be defined in terms of its Hilbert series. We will give various characterizations of the depth of a module and its relation to the Krull dimension. These considerations lead to Cohen–Macaulay modules and Gorenstein rings. We then describe the relationship, known as Auslander–Buchsbaum formula, between the depth of a graded S-module M and its projective dimension, where S is a polynomial ring, and study in more detail the finite minimal graded free S-resolution of M. The regularity of M will be defined via this resolution. Koszul algebras are standard graded K-algebras whose graded maximal ideal has a linear resolution. Unless this graded ring is a polynomial ring, this resolution is infinite. We discuss various necessary and sufficient conditions for Koszulness. The methods involved include Gröbner bases and Koszul filtrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anick, D.: A counterexample to a conjecture of Serre. Ann. Math. 115, 1–33 (1982)

    Article  MathSciNet  Google Scholar 

  2. Avramov, L.: Infinite free resolutions. In: Elias, J., Giral, J.M., Miró-Roig, R.M., Zarzuela, S. (eds.) Six Lectures on Commutative Algebra. Progress in Mathematics, vol. 166, pp. 1–118. Birkhäuser, Basel (1998)

    Google Scholar 

  3. Backelin, J., Fröberg, R.: Koszul algebras, veronese subrings and rings with linear resolutions. Rev. Roum. Math. Pures Appl. 30, 85–97 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)

    Article  MathSciNet  Google Scholar 

  5. Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  6. Conca, A., Rossi, M.E., Valla, G.: Gröbner flags and Gorenstein algebras. Compos. Math. 129, 95–121 (2001)

    Article  Google Scholar 

  7. Conca, A., Trung, N.V., Valla, G.: Koszul property for points in projective space. Math. Scand. 89, 201–216 (2001)

    Article  MathSciNet  Google Scholar 

  8. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1995)

    Chapter  Google Scholar 

  9. Ene, V., Herzog, J.: Gröbner Bases in Commutative Algebra. Graduate Studies in Mathematics. American Mathematical Society, Providence (2012)

    Google Scholar 

  10. Ene, V., Herzog, J., Hibi, T.: Cohen–Macaulay binomial edge ideals. Nagoya Math. J. 204, 57–68 (2011)

    Article  MathSciNet  Google Scholar 

  11. Fröberg, R.: Determination of a class of Poincaré series. Math. Scand. 37, 29–39 (1975)

    Article  MathSciNet  Google Scholar 

  12. Fröberg, R., Koszul algebras. In: Dobbs, D.E., Fontana, M., Kabbaij, S-E. (eds.) Advances in Commutative Ring Theory (Fez 1997). Lecture Notes in Pure and Applied Mathematics, pp. 337–350. M. Dekker, New York (1999)

    Google Scholar 

  13. Gulliksen, T.H.: A proof of the existence of minimal algebra resolutions. Acta Math. 120, 53–58 (1968)

    Article  MathSciNet  Google Scholar 

  14. Herzog, J.: Algebra retracts and Poincare series. Manuscripta Math. 21, 307–314 (1977)

    Article  MathSciNet  Google Scholar 

  15. Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics. Springer, New York (2010)

    Google Scholar 

  16. Herzog, J., Hibi, T., Restuccia, G.: Strongly Koszul algebras. Math. Scand. 86, 161–178 (2000)

    Article  MathSciNet  Google Scholar 

  17. Löfwall, C.: On the subalgebra generated by one-dimensional elements in the Yoneda Ext-algebras. In: Roos, J.E. (ed.) Algebra, Algebraic Topology and their Interactions. Lecture Notes in Mathematics, vol. 1183, pp-291–338. Springer, New York (1986)

    Google Scholar 

  18. Ohsugi, H., Herzog, J., Hibi, T.: Combinatorial pure subrings. Osaka J. Math. 37, 745–757 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Priddy, S.B.: Koszul resolutions. Trans. AMS 152, 39–60 (1970)

    Article  MathSciNet  Google Scholar 

  20. Schoeller, C.: Homologie des anneaux locaux noethérien. C.R. Acad. Sci: Paris Sér. A 265, 768–771 (1967)

    MathSciNet  MATH  Google Scholar 

  21. Tate, J.: Homology of noetherian rings and local rings. Ill. J. Math. 1, 14–25 (1957)

    MathSciNet  MATH  Google Scholar 

  22. Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics vol. 38. Cambridge University Press, Cambridge (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herzog, J., Hibi, T., Ohsugi, H. (2018). Review of Commutative Algebra. In: Binomial Ideals. Graduate Texts in Mathematics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-95349-6_2

Download citation

Publish with us

Policies and ethics