Skip to main content

Motor Compositionality and Timing: Combined Geometrical and Optimization Approaches

  • Chapter
  • First Online:
Biomechanics of Anthropomorphic Systems

Abstract

Human movements are characterized by their invariant spatiotemporal features. The kinematic features and internal movement timing were accounted for by the mixture of geometries model using a combination of Euclidean, affine and equi-affine geometries. Each geometry defines a unique parametrization along a given curve and the net tangential velocity arises from a weighted summation of the logarithms of the geometric velocities. The model was also extended to deal with geometrical singularities forcing unique constraints on the allowed geometric mixture. Human movements were shown to optimize different costs. Specifically, hand trajectories were found to maximize motion smoothness by minimizing jerk. The minimum jerk model successfully accounted for a range of human end-effector motions including unconstrained and path-constrained trajectories. The two modeling approaches involving motion optimality and the geometries’ mixture model are here further combined to form a joint model whereby specific compositions of geometries can be selected to generate an optimal behavior. The optimization serves to define the timing along a path. Additionally, new notions regarding the nature of movement primitives used for the construction of complex movements naturally arise from the consideration of the two modelling approaches. In particular, we suggest that motion primitives may consist of affine orbits; trajectories arising from the group of full-affine transformations. Affine orbits define the movement’s shape. Particular mixtures of geometries achieve the smoothest possible motions, defining timing along each orbit. Finally, affine orbits can be extracted from measured human paths, enabling movement segmentation and an affine-invariant representation of hand trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abend, W., Bizzi, E., Morasso, P.: Human arm trajectory formation. Exp. Brain Res. 105, 331–348 (1982)

    Google Scholar 

  2. Abeles, M., Diesmann, M., Flash, T., Geisel, T., Hermann, M., Teicher, M.: Compositionality in neural control: an interdisciplinary study of scribbling movements in primates. Frontiers in computational neuroscience 7, 103 (2013)

    Article  Google Scholar 

  3. Balasubramanian, S., Melendez-Calderon, A., Roby-Brami, A., Burdet, E.: On the analysis of movement smoothness. J. Neuroengineering Rehabil. 12(1), 112 (2015)

    Article  Google Scholar 

  4. Ben-Itzhak, A., Karniel, A.: Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Neural Comput. 20(3), 779–812 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bennequin, D., Fuchs, R., Berthoz, A., Flash, T.: Movement timing and invariance arise from several geometries. PLoS Comput. Biol. 5(7), e1000426 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bennequin, D., Berthoz, A.: Several geometries for movements generations. In: Laumond, J.-P., Mansard, N., Lasserre, J.-B. (eds.) Geometric and Numerical Foundations of Movements vol. 117, pp. 13–43. Springer Tract in Advanced Robotics (2017)

    Google Scholar 

  7. Bernstein, N.: The Co-ordination and Regulation of Movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  8. Biess, A., Nagurka, M., Flash, T.: Simulating discrete and rhythmic multi-joint human arm movements by optimisation of nonlinear performance indices. Biol. Cybern. 95(1), 31–53 (2006)

    Article  Google Scholar 

  9. Biess, A., Liebermann, D.G., Flash, T.: A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J. Neurosci. 27(48), 13045–13064 (2007)

    Article  Google Scholar 

  10. Bizzi, E., Tresch, M.C., Saltiel, P., d Avella, A.: New perspectives on spinal motor systems. Nat. Rev. Neurosci. 1(2), 101–108 (2000)

    Article  Google Scholar 

  11. Bizzi, E., Mussa-Ivaladi, F.A.: Motor learning through the combination of primitives. Philos. Trans. Royal Soc. London Ser. B-Biol. Sci. 355, 1755–1759 (2000)

    Article  Google Scholar 

  12. Bright, I.: Motion planning through optimisation. Master’s thesis, Weizmann Institute of Science (2007)

    Google Scholar 

  13. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vision 26(2), 107–135 (1998)

    Article  Google Scholar 

  14. Desmurget, M., Pélisson, D., Rossetti, Y., Prablanc, C.: From eye to hand: planning goal-directed movements. Neurosci. Biobehav. Rev. 22(6), 761–788 (1998)

    Article  Google Scholar 

  15. de’Sperati, C., Viviani, P.: The relationship between curvature and velocity in two-dimensional smooth pursuit eye movements. J. Neurosci. 17(10), 3932–3945 (1997)

    Article  Google Scholar 

  16. Dingwell, J.B., Mah, C.D., Mussa-Ivaldi, F.A.: Experimentally confirmed mathematical model for human control of a non-rigid object. J. Neurophysiol. 91(3), 1158–1170 (2004)

    Article  Google Scholar 

  17. Faugeras,O., Keriven, R.: (1996) On projective plane curve evolution. In Lecture Notes in Control and Information Sciences, pp. 66–73 (1996)

    Google Scholar 

  18. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)

    Article  Google Scholar 

  19. Flash T.: Organizing principles underlying the formation of hand trajectories. Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA (1983)

    Google Scholar 

  20. Flash, T., Handzel, A.A.: Affine differential geometry analysis of human arm movements. Biol. Cybern. 96(6), 577–601 (2007)

    Article  MathSciNet  Google Scholar 

  21. Flash, T., Henis, E.: Arm trajectory modifications during reaching towards visual targets. J. Cogn. Neurosci. 3(3), 220–230 (1991)

    Article  Google Scholar 

  22. Flash, T., Hochner, B.: Motor primitives in vertebrates and invertebrates. Curr. Opin. Neurobiol. 15(6), 660–666 (2005)

    Article  Google Scholar 

  23. Flash, T., Hogan, N.: The coordination of arm movements—an experimentally confirmed mathematical-model. J. Neurosci. 5(7), 1688–1703 (1985)

    Article  Google Scholar 

  24. Fuchs, R.: Human motor control: geometry, invariants and optimisation, Ph.D. thesis, Department of CS and applied Mathematics, Weizmann Institute of Science, Rehovot, Isreal (2010)

    Google Scholar 

  25. Guggenheimer, H.W.: Differential Geometry. Dover Publications, (1977, June)

    Google Scholar 

  26. Handzel, A., Flash, T.: Affine differential geometry analysis of human arm trajectories. Abs. Soc. Neurosci. 22 (1996)

    Google Scholar 

  27. Handzel, A.A., Flash, T.: Geometric methods in the study of human motor control. Cognitive Studies 6(3), 309–321 (1999)

    Google Scholar 

  28. Henis, E., Flash, T.: Mechanisms underlying the generation of averaged modified trajectories. Biol. Cybern. 72(5), 407–419 (1995)

    Article  Google Scholar 

  29. Hicheur, H., Vieilledent, S., Richardson, M.J.E., Flash, T., Berthoz, A.: Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements. Exp. Brain Res. 162(2), 145–154 (2005)

    Article  Google Scholar 

  30. Huh, D., Sejnowski, T.J.: Spectrum of power laws for curved hand movements. Proc. Natl. Acad. Sci. 112(29), E3950–E3958 (2015)

    Article  Google Scholar 

  31. Ivanenko, Y.P., Grasso, R., Macellari, V., Lacquaniti, F.: Two-thirds power law in human locomotion: role of ground contact forces. NeuroReport 13(9), 1171–1174 (2002)

    Article  Google Scholar 

  32. Karklinsky, M., Flash, T.: Timing of continuous motor imagery: the two-thirds power law originates in trajectory planning. J. Neurophysiol. 113(7), 2490–2499 (2015)

    Article  Google Scholar 

  33. Kohen, D., Karklinsky, M., Meirovitch, T., Flash T., Shmuelof, L.: The effects of shortening preparation time on the execution of intentionally curved trajectories: optimisation and geometrical analysis. Frontiers Human Neuroscience (in press)

    Google Scholar 

  34. Lacquaniti, F., Terzuolo, C., Viviani, P.: The law relating kinematic and figural aspects of drawing movements. Acta Physiol. (Oxf) 54, 115–130 (1983)

    Google Scholar 

  35. Lashley, K.: The problem of serial order in psychology. In: Cerebral mechanisms in behavior. Wiley, New York (1951)

    Google Scholar 

  36. Levit-Binnun, N., Schechtman, E., Flash, T.: On the similarities between the perception and production of elliptical trajectories. Exp. Brain Res. 172(4), 533–555 (2006)

    Article  Google Scholar 

  37. Meirovitch, Y: Kinematic Analysis of Israeli Sign Language. Master thesis, The Weizmann Institute (2008)

    Google Scholar 

  38. Meirovitch, Y., Bennequin, D., Flash, T.: Geometrical Invariance and Smoothness Maximization for Task-Space Movement Generation. IEEE Trans. Rob. 32(4), 837–853 (2016)

    Article  Google Scholar 

  39. Meirovitch, T.: Movement decomposition and compositionality based on geometric and kinematic principles. Department of Computer Science and Applied Maths Ph. D. dissertation, Weizmann Institute of Science, Rehovot, Israel (2014)

    Google Scholar 

  40. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. IEEE Robotics and Automation (ICRA), pp. 2520–2525, 2011

    Google Scholar 

  41. Mombaur, K., Laumond, J.P., Yoshida, E.: An optimal control model unifying holonomic and nonholonomic walking. In: Humanoid Robots. 8th IEEE-RAS International Conference on pp. 646–653 (2008)

    Google Scholar 

  42. Morasso, P.: Spatial control of arm movements. Exp. Brain Res. 42(2), 223–322 (1981)

    Article  Google Scholar 

  43. Mussa-Ivaldi, F.A., Solla, S.A.: Neural primitives for motion control. IEEE J. Oceanic Eng. 29(3), 640–650 (2004)

    Article  Google Scholar 

  44. Olver, P.J., Sapiro, G., Tannenbaum, A., et al.: Differential invariant signatures and flows in computer vision: A symmetry group approach. In: Geometry driven diffusion in computer vision (1994)

    Google Scholar 

  45. Pham, Q.-C., Bennequin, D.: Affine invariance of human hand movements: a direct test. preprint arXiv Biology:1209.1467 (2012)

    Google Scholar 

  46. Pollick, Frank E., Sapiro, Guillermo: Constant affine velocity predicts the 1/3 power law pf planar motion perception and generation. Short Commun. 37(3), 347–353 (1996)

    Google Scholar 

  47. Polyakov, F.: Analysis of monkey scribbles during learning in the framework of models of planar hand motion. Ph.D. thesis, The Weizmann Institute of Science (2001)

    Google Scholar 

  48. Polyakov, F., Drori, R., Ben-Shaul, Y., Abeles, M., Flash, T.: A compact representation of drawing movements with sequences of parabolic primitives (2009)

    Google Scholar 

  49. Polyakov, F., Stark, E., Drori, R., Abeles, M., Flash, T.: Parabolic movement primitives and cortical states: merging optimality with geometric invariance. Biol. Cybern. 100(2), 159–184 (2009)

    Article  MathSciNet  Google Scholar 

  50. Raket, L.L., Grimme, B., Schoner, G., Christian, I., Markussen, B.: Separating timing, movement conditions and individual differences in the analysis of human movement. PLoS Comput. Biol. 12(9), e1005092 (2016)

    Article  Google Scholar 

  51. Richardson, J.M.E., Flash, T.: Comparing smooth arm movements with the two- thirds power law and the related segmented-control hypothesis. J. Neurosci. 22(18), 8201–8211 (2002)

    Article  Google Scholar 

  52. Schaal, S., Sternad, D.: Segmentation of endpoint trajectories does not imply segmented control. Exp. Brain Res. 124, 118–136 (1999)

    Article  Google Scholar 

  53. Sosnik, R., Hauptmann, B., Karni, A., Flash, T.: When practice leads to co-articulation: the evolution of geometrically defined movement primitives. Exp. Brain Res. 156(4), 422–438 (2004)

    Article  Google Scholar 

  54. Tanaka, H., Krakauer, J.W., Qian, N.: An optimization principle for determining movement duration. Neurophysiol. 95(6), 3875–3886 (2006)

    Article  Google Scholar 

  55. Tasko, S.M., Westbury, J.R.: Speed–curvature relations for speech-related articulatory movement. J. Phonetics 32(1), 65–80 (2004)

    Article  Google Scholar 

  56. Todorov, E., Jordan, M.I.: Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J. Neurophysiol. 80, 696–714 (1998)

    Article  Google Scholar 

  57. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226–1235 (2002)

    Article  Google Scholar 

  58. Viviani, P., Cenzato, M.: Segmentation and coupling in complex movements. J. Exp. Psychol. Hum. Percept. Perform. 11(6), 828–845 (1985)

    Article  Google Scholar 

  59. Viviani, P., Stucchi, N.: Biological movements look uniform: evidence of motor-perceptual interactions. J. Exp. Psychol. Hum. Percept. Perform. 18(3), 603 (1992)

    Article  Google Scholar 

  60. Viviani, P., Flash, T.: Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J. Exp. Psychol. Hum. Percept. Perform. 21(1), 32–53 (1995)

    Article  Google Scholar 

  61. Vieilledent, S., Kerlirzin, Y., Dalbera, S., Berthoz, A.: Relationship between velocity and curvature of a human locomotor trajectory. Neurosci. Lett. 305(1), 65–69 (2001)

    Article  Google Scholar 

  62. Viviani, P., McCollum, G.: The relation between linear extent and velocity in drawing movements. Neuroscience 10(1), 211–218 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Meirovitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flash, T., Karklinsky, M., Fuchs, R., Berthoz, A., Bennequin, D., Meirovitch, Y. (2019). Motor Compositionality and Timing: Combined Geometrical and Optimization Approaches. In: Venture, G., Laumond, JP., Watier, B. (eds) Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-93870-7_8

Download citation

Publish with us

Policies and ethics