Skip to main content

Flow Cytometric Measurement of Different Physiological Parameters

  • Chapter
  • First Online:

Abstract

A variety of physiological parameters involved in signal transduction pathways, enzymatic activities, ATP production, and many other physiological processes can be analyzed by flow cytometry. Parameters as intracellular pH, membrane potential, calcium concentration, reactive oxygen species (ROS) generation, or glutathione content can be estimated thanks to this technique. One of the principal advantages of flow cytometry is that it allows the measurement of these parameters in living and small cells, usually in real time during the physiological stimulation. Moreover, flow cytometry can detect not only the fluorescence of biochemically specific developed fluorescent dyes but also autofluorescence (such as the chlorophyll a fluorescence), which can be measured in parallel and can provide supplementary information about the physiological condition of the measured cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achkor H, Díaz M, Fernández MR, Biosca JA, Parés X, Martínez MC (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol 132:2248–2255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adachi T, Tsubata T (2008) Fret-based Ca2+ measurement in B lymphocyte by flow cytometry and confocal microscopy. Biochem Biophys Res Commun 367:377–382

    Article  PubMed  CAS  Google Scholar 

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11(9):1785

    Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Bakayan A, Domingo B, Vaquero CF, Peyrieras N, Llopis J (2017) Fluorescent protein–photoprotein fusions and their applications in calcium imaging. Photochem Photobiol 93:448–465

    Article  PubMed  CAS  Google Scholar 

  • Bakker P, Stap J, Tukker C, Van Oven C, Veenhof C, Aten J (1991) An indirect immunofluorescence double staining procedure for the simultaneous flow cytometric measurement of iodo-and chlorodeoxyuridine incorporated into DNA. Cytometry A 12:366–372

    Article  CAS  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Behera S, Wang N, Zhang C, Schmitz-Thom I, Strohkamp S, Schültke S, Hashimoto K, Xiong L, Kudla J (2015) Analyses of Ca2+ dynamics using a ubiquitin-10 promoter-driven Yellow Cameleon 3.6 indicator reveal reliable transgene expression and differences in cytoplasmic Ca2+ responses in Arabidopsis and rice (Oryza sativa) roots. New Phytol l206:751–760

    Article  CAS  Google Scholar 

  • Benčina M (2013) Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. Sensors 13:16736–16758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benson KF, Newman RA, Jensen GS (2015) Antioxidant, anti-inflammatory, anti-apoptotic, and skin regenerative properties of an Aloe vera-based extract of Nerium oleander leaves (NAE-8®). Clin Cosmet Investig Dermatol 8:239

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bonza MC, Loro G, Behera S, Wong A, Kudla J, Costa A (2013) Analyses of Ca2+ accumulation and dynamics in the endoplasmic reticulum of Arabidopsis root cells using a genetically encoded Cameleon sensor. Plant Physiol 163:1230–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradner J, Nevalainen K (2003) Metabolic activity in filamentous fungi can be analysed by flow cytometry. J Microbiol Met 54:193–201

    Article  CAS  Google Scholar 

  • Burns JM, Cooper WJ, Ferry JL, King W, DiMento BP, McNeill K, Miller CJ, Miller WL, Peake BM, Rusak SA, Rose AL, Waite TD (2012) Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sci 74:683–734

    Article  CAS  Google Scholar 

  • Bush DS, Jones RL (1987) Measurement of cytoplasmic calcium in aleurone protoplasts using indo-1 and fura-2. Cell Calcium 8:455–472

    Article  PubMed  CAS  Google Scholar 

  • Bush DS, Jones RL (1990) Measuring intracellular levels in plant cells using the fluorescent probes, indo-1 and fura-2. Plant Physiol 93:841–845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cid A, Fidalgo Paredes P, Herrero C, Abalde J (1996) Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry. Cytometry 25:32–36

    Article  PubMed  CAS  Google Scholar 

  • Coba de la Peña TC (2001) Use of flow cytometry to measure physiological parameters. In: Handbook of plant ecophysiology techniques. Springer, p 53–64

    Google Scholar 

  • Coleman J, Randall R, Blake-Kalff M (1997) Detoxification of xenobiotics in plant cells by glutathione conjugation and vacuolar compartmentalization: a fluorescent assay using monochlorobimane. Plant Cell Environ 20:449–460

    Article  CAS  Google Scholar 

  • Cronjé MJ, Weir IE, Bornman L (2004) Salicylic acid-mediated potentiation of Hsp70 induction correlates with reduced apoptosis in tobacco protoplasts. Cytometry A 61:76–87

    Article  PubMed  CAS  Google Scholar 

  • Darjania J, Curvetto N, Delmastro S (1993) Loading of Vicia faba guard cell protoplasts with indo-1 to measure cytosolic calcium concentration. Plant Physiol Biochem 31:793–798

    CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Simone A, Dong Y, Vivancos PD, Foyer CH (2015) GSH partitioning between the nucleus and cytosol in Arabidopsis thaliana. In: De Kok LJ, Hawkesford MJ, Rennenberg H, Saito K, Schnug E (eds) Molecular physiology and ecophysiology of sulfur. Springer, Cham, pp 37–48

    Chapter  Google Scholar 

  • Demaurex N, Frieden M (2003) Measurements of the free luminal ER Ca2+ concentration with targeted “cameleon” fluorescent proteins. Cell Calcium 34:109–119

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Deorukhkar A, Ahuja N, Mercado AL, Diagaradjane P, Raju U, Patel N, Mohindra P, Diep N, Guha S, Krishnan S (2015) Zerumbone increases oxidative stress in a thiol-dependent ROS-independent manner to increase DNA damage and sensitize colorectal cancer cells to radiation. Cancer Med 4:278–292

    Article  PubMed  CAS  Google Scholar 

  • Doucette J, Zhao Z, Geyer RJ, Barra M, Balunas MJ, Zweifach A (2016) Flow cytometry enables multiplexed measurements of genetically encoded intramolecular FRET sensors suitable for screening. J Biomol Screen 21:535–547

    Article  PubMed  CAS  Google Scholar 

  • Driever SM, Fryer MJ, Mullineaux PM, Baker NR (2009) Imaging of reactive oxygen species in vivo. In: Pfannschmidt T (ed) Plant signal transduction, Methods in Molecular Biology, vol 479. Humana Press, Totowa, pp 109–116

    Chapter  Google Scholar 

  • Dye BT (2005) Flow cytometric analysis of CFP–YFP FRET as a marker for in vivo protein–protein interaction. Clin Appl Immunol Rev 5:307–324

    Article  CAS  Google Scholar 

  • Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM (2017) The evolution of calcium-based signalling in plants. Curr Biol 27:667–679

    Article  CAS  Google Scholar 

  • Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. In: Advanced protocols in oxidative stress II. Springer, p 57–72

    Google Scholar 

  • Felle H (1988) Short-term pH regulation in plants. Physiol Plant 74:583–591

    Article  CAS  Google Scholar 

  • Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green®. J Exp Bot 57:1725–1734

    Article  PubMed  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP (2001) Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters. Environ Toxicol Chem 20:160–170

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 27:97–106

    Article  PubMed  CAS  Google Scholar 

  • Georgiou CD, Papapostolou I, Grintzalis K (2008) Superoxide radical detection in cells, tissues, organisms (animals, plants, insects, microorganisms) and soils. Nat Protoc 3:1679

    Article  PubMed  CAS  Google Scholar 

  • Giglioli-Guivarch N, Pierre JN, Vidal J, Brown S (1996) Flow cytometric analysis of cytosolic pH of mesophyll cell protoplasts from the crabgrass Digitaria sanguinalis. Cytometry 23:241–249

    Article  CAS  Google Scholar 

  • Gjetting SK, Ytting CK, Schulz A, Fuglsang AT (2012) Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J Exp Bot 63:3207–3218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonugunta VK, Srivastava N, Puli MR, Raghavendra AS (2008) Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant Cell Environ 31:1717–1724

    Article  PubMed  CAS  Google Scholar 

  • Gross D, Loew LM (1989) Fluorescent indicators of membrane potential: micro-spectrofluorometry and imaging. Meth Cell Biol 30:193–218

    Article  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Haslam R, Rust S, Pallett K, Cole D, Coleman J (2002) Cloning and characterisation of S-formylglutathione hydrolase from Arabidopsis thaliana: a pathway for formaldehyde detoxification. Plant Physiol Biochem 40:281–288

    Article  CAS  Google Scholar 

  • Haugland RP (2003) Indicators for Ca2+, Mg2+, Zn2+ and other metal ions. In: Larison KD (ed) Handbook of fluorescent probes and research products, 9th edn. Molecular Probes, Eugene Chapter 20

    Google Scholar 

  • Haugland RP, Spence MT, Johnson ID (1996) Handbook of fluorescent probes and research chemicals. Molecular Probes, Eugene 390 pp

    Google Scholar 

  • Hedley DW, Chow S (1994) Evaluation of methods for measuring cellular glutathione content using flow cytometry. Cytometry A 15:349–358

    Article  CAS  Google Scholar 

  • Held P (2010) An introduction to reactive oxygen species: measurement of ros in cells. BioTek Instruments, Winooski

    Google Scholar 

  • Huang FY, Philosoph-Hadas S, Meir S, Callaham DA, Hepler PK (1997) Increases in cytosolic Ca2+ in parsley mesophyll cells correlate with leaf senescence. Plant Physiol 115:51–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jambunathan N (2010) Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol Biol 639:292–298

    PubMed  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • June CH, Moore JS (2004) Measurement of intracellular ions by flow cytometry. Curr Protocol Immunol 5:5.5.1–5.5.20

    Google Scholar 

  • Kamencic H, Lyon A, Paterson PG, Juurlink BH (2000) Monochlorobimane fluorometric method to measure tissue glutathione. Anal Biochem 286:35–37

    Article  PubMed  CAS  Google Scholar 

  • Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krasznai Z, Márián T, Balkay L, Emri M, Trón L (1995) Flow cytometric determination of absolute membrane potential of cells. J Photoch Photobio 28:93–99

    Article  CAS  Google Scholar 

  • Kruk I, Aboul-Enein HY, Michalska T, Lichszteld K, Kładna A (2005) Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein. Luminescence 20:81–89

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurkdjian A, Guern J (1989) Intracellular pH: measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol Biol 40:271–303

    Article  CAS  Google Scholar 

  • Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Tsien RW (2012) pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat Neurosci 15:1047–1053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lilius H, Haestbacka T, Isomaa B (1996) A combination of fluorescent probes for evaluation of cytotoxicity and toxic mechanisms in isolated rainbow trout hepatocytes. Toxicol In Vitro 10:341–348

    Article  PubMed  CAS  Google Scholar 

  • Loew LM (1993) Potentiometric membrane dyes. In: Masson WT (ed) Fluorescent and luminiscent probes for biological activity, A Practical Guide to Technology for Quantitative Real-Time Analysis. Academic, London

    Google Scholar 

  • Loro G, Wagner S, Doccula FG, Behera S, Weinl S, Kudla J, Schwarzländer M, Costa A, Zottini M (2016) Chloroplast-specific in vivo Ca2+ imaging using Yellow Cameleon fluorescent protein sensors reveals organelle-autonomous Ca2+ signatures in the stroma. Plant Physiol 171:2317–2330

    PubMed  PubMed Central  CAS  Google Scholar 

  • Maeda Y, Ide T, Koike M, Uchiyama Y, Kinoshita T (2008) GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat Cell Biol 10:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Martí MC, Stancombe MA, Webb AAR (2013) Cell- and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiol 163:625–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruyama-Nakashita A, Ohkama-Ohtsu N (2017) Sulfur assimilation and glutathione metabolism in plants. In: Hossain M, Mostofa M, Diaz-Vivancos P, Burritt D, Fujita M, Tran LS (eds) Glutathione in plant growth, development, and stress tolerance. Springer, Cham, pp 287–308

    Chapter  Google Scholar 

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Müller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JA, Meyer AJ, Cobbett CS (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. P Natl A Sci 107:2331–2336

    Article  Google Scholar 

  • Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem Paper Edition 269:9397–9400

    CAS  Google Scholar 

  • Meyer AJ, May MJ, Fricker M (2001) Quantitative in vivo measurement of glutathione in Arabidopsis cells. Plant J 27:67–78

    Article  PubMed  CAS  Google Scholar 

  • Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  CAS  Google Scholar 

  • Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Nat Acad Sci USA 96:2135–2140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci U S A 104:20996–21001

    Article  PubMed  PubMed Central  Google Scholar 

  • Montana V, Farkas DL, Loew LM (1989) Dual wavelength radiometric fluorescence measurements of membrane potential. Biochemistry 28:4536

    Article  PubMed  CAS  Google Scholar 

  • Moseyko N, Feldman LJ (2001) Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ 24:557–563

    Article  PubMed  CAS  Google Scholar 

  • Munoz LP (2014) The mechanisms of arsenic detoxification by the green microalgae Chlorella vulgaris. Middlesex University Dissertation

    Google Scholar 

  • Munoz LP, Purchase D, Jones H, Raab A, Urgast D, Feldmann J, Garelick H (2016) The mechanisms of detoxification of As (III), dimethylarsinic acid (DMA) and As (V) in the microalga Chlorella vulgaris. Aquat Toxicol 175:56–72

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  PubMed  CAS  Google Scholar 

  • Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 53:988–998

    Article  PubMed  CAS  Google Scholar 

  • O’Brien IE, Baguley BC, Murray BG, Morris BA, Ferguson IB (1998) Early stages of the apoptotic pathway in plant cells are reversible. Plant J 13:803–814

    Article  Google Scholar 

  • O’Brien IE, Reutelingsperger CP, Holdaway KM (1997) Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry A 29:28–33

    Article  Google Scholar 

  • Ortega-Villasante C, Rellán-Alvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Villasante C, Burén S, Barón-Sola Á, Martínez F, Hernández LE (2016) In vivo ROS and redox potential fluorescent detection in plants: present approaches and future perspectives. Meth 109:92–104

    Article  CAS  Google Scholar 

  • Paredes RM, Etzler JC, Watts LT, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:159–172

    Article  PubMed  CAS  Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012

    Article  PubMed  CAS  Google Scholar 

  • Pattanayak GK, Venkataramani S, Hortensteiner S, Kunz L, Christ B, Moulin M, Smith AG, Okamoto Y, Tamiaki H, Sugishima M, Greenberg JT (2012) Accelerated cell death 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. Plant J 69:589–600

    Article  PubMed  CAS  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Plasek J, Sigler K (1996) Slow fluorescent indicators of membrane potential: a survey of different approaches to probe response analysis. J Photoch Photobio 33:101–124

    Article  CAS  Google Scholar 

  • Posey AD Jr, Kawalekar OU, June CH (2015) Measurement of intracellular ions by flow cytometry. Curr Protoc Cytom 72:9.8.1–9.8.21

    Article  Google Scholar 

  • Posner GH, Lever JR, Miura K, Lisek C, Seliger HH, Thompson A (1984) A chemiluminescent probe specific for singlet oxygen. Biochem Bioph Res Co 123:869–873

    Article  CAS  Google Scholar 

  • Rennenberg H (1995) Process involved in glutathione metabolism. In: Wallsgrove RM (ed) Amino acids and their derivatives in higher plants. Institute of arable Crops Research (IACR), Rothamsted, pp 155–171

    Chapter  Google Scholar 

  • Riveras E, Alvarez JM, Vidal EA, Oses C, Vega A, Gutiérrez RA (2015) The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis. Plant Physiol 169:1397–1404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson JP, Darzynkiewicz Z, Dean PN, Hibbs AR, Orfao A, Rabinovitch PS, Wheeless LL, Chow S, Hedley D (1997) Flow cytometric measurement of intracellular pH. Curr Protoc Cytom 00(1):9.3.1–9.3.10

    Google Scholar 

  • Rodrigues R, Silva RD, Noronha H, Pedras A, Gerós H, Côrte-Real M (2013) Flow cytometry as a novel tool for structural and functional characterization of isolated yeast vacuoles. Microbiology 159:848–856

    Article  PubMed  CAS  Google Scholar 

  • Roy SS, Hajnóczky G (2009) Fluorometric methods for detection of mitochondrial membrane permeabilization in apoptosis. Methods Mol Biol 559:173–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubio V, Zhang J, Valverde M, Rojas E, Shi Z-Z (2011) Essential role of Nrf2 in protection against hydroquinone-and benzoquinone-induced cytotoxicity. Toxicol In Vitro 25:521–529

    Article  PubMed  CAS  Google Scholar 

  • Sabnis RW (2015) Handbook of fluorescent dyes and probes. Wiley, New Jersey

    Book  Google Scholar 

  • Saison C, Perreault F, Daigle J-C, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114

    Article  PubMed  CAS  Google Scholar 

  • Sakano K (2001) Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. Int Rev Cytol 206:1–44

    Article  PubMed  CAS  Google Scholar 

  • Schulte A, Lorenzen I, Böttcher M, Plieth C (2006) A novel fluorescent pH probe for expression in plants. Plant Methods 2:7–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shapiro HM (2004) Estimation of membrane potential by flow cytometry. Curr Protoc Cytom 9(6):9.6.1–9.6.12

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Shechter E (1984) In: Masson (ed) Membranes biologiques. Masson S.A., Paris

    Google Scholar 

  • Smith FA (1979) Intracellular pH and its regulation. Annu Rev Plant Physiol 30:289–311

    Article  CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1998) Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118:759–771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson SJ, Choi WG, Chanoca A, Gilroy S (2011) In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62:273–297

    Article  PubMed  CAS  Google Scholar 

  • Tang PM-K, Liu X-Z, Zhang D-M, Fong W-P, Fung K-P (2009) Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer Biol Ther 8:533–539

    Article  PubMed  CAS  Google Scholar 

  • Tauskela JS, Hewitt K, Kang LP, Comas T, Gendron T, Hakim A, Hogan M, Durkin J, Morley P (2000) Evaluation of glutathione-sensitive fluorescent dyes in cortical culture. Glia 30:329–341

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, MacGill RS, Miller GC, Pardini RS (1992) Photoactivation of hypericin generates singlet oxygen in mitochondria and inhibits succinoxidase. Photochem Photobiol 55:47–53

    Article  PubMed  CAS  Google Scholar 

  • Thompson A, Biggley W, Posner G, Lever J, Seliger H (1986a) Microsomal chemiluminescence of benzo [a] pyrene-7, 8-dihydrodiol and its synthetic analogues trans-and cis-1-methoxyvinylpyrene. Biochim Biophys Acta 882:210–219

    Article  PubMed  CAS  Google Scholar 

  • Thompson A, Seliger HH, Posner GH (1986b) Chemiluminescent probes for singlet oxygen in biological reactions. In: Methods in enzymology, vol 133. Elsevier, p 569–584

    Google Scholar 

  • Treumer J, Valet G (1986) Flow-cytometric determination of glutathione alterations in vital cells by o-phthaldialdehyde (OPT) staining. Exp Cell Res 163:518–524

    Article  PubMed  CAS  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya M, Suematsu M, Suzuki H (1994) [12] In vivo visualization of oxygen radical-dependent photoemission. In: Methods in enzymology, vol 233. Elsevier, p 128–140

    Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants. Plant Signal Behav 2:79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Valkonen M, Mojzita D, Penttilä M, Benčina M (2013) Noninvasive high-throughput single-cell analysis of the intracellular pH of Saccharomyces cerevisiae by ratiometric flow cytometry. Appl Environ Microbiol 79:7179–7187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanderven AJ, Mier P, Peters WH, Dolstra H, Vanerp P, Koopmans PP, Vandermeer J (1994) Monochlorobimane does not selectively label glutathione in peripheral blood mononuclear cells. Anal Biochem 217:41–47

    Article  CAS  Google Scholar 

  • Vines A, McBean GJ, Blanco-Fernández A (2010) A flow-cytometric method for continuous measurement of intracellular Ca(2+) concentration. Cytometry A 77:1091–1907

    Article  PubMed  CAS  Google Scholar 

  • Vivancos PD, Dong Y, Ziegler K, Markovic J, Pallardó FV, Pellny TK, Verrier PJ, Foyer CH (2010) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838

    Article  PubMed  CAS  Google Scholar 

  • Walrand S, Valeix S, Rodriguez C, Ligot P, Chassagne J, Vasson M-P (2003) Flow cytometry study of polymorphonuclear neutrophil oxidative burst: a comparison of three fluorescent probes. Clin Chim Acta 331:103–110

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zeng L, Xing D (2015) ROS-mediated enhanced transcription of CYP38 promotes the plant toleran. Tauskela JS et al. (2000) Evaluation of glutathione-sensitive fluorescent dyes in cortical culture. Glia 30:329–341

    Google Scholar 

  • Weir IE, Maddumage R, Allan AC, Ferguson IB (2005) Flow cytometric analysis of tracheary element differentiation in Zinnia elegans cells. Cytometry A 68:81–91

    Article  PubMed  Google Scholar 

  • Wiederschain GY (2011) The molecular probes handbook. A guide to fluorescent probes and labeling technologies. Biochem Mosc 76:1276–1276

    Article  CAS  Google Scholar 

  • Xu J, Xing X-J, Tian Y-S, Peng R-H, Xue Y, Zhao W, Yao Q-H (2015) Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One 10:e0136960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou B, Wang J, Guo Z, Tan H, Zhu X (2006) A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regul 49:113–118

    Article  CAS  Google Scholar 

  • Zottini M, Zannoni D (1993) The use of Fura-2 fluorescence to monitor the movement of free calcium ions into the matrix of plant mitochondria. (Pisum sativum and Helianthus tuberosus). Plant Physiol 102:573–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

This chapter is an update of ‘Coba de la Peña (2001) Use of flow cytometry to measure physiological parameters. In: Reigosa MJ (Ed), Handbook of Plant Ecophysiology Techniques. Kluwer Academic Publishers, The Netherlands, pp. 53–64.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adela M. Sánchez-Moreiras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araniti, F., Coba de la Peña, T., Sánchez-Moreiras, A.M. (2018). Flow Cytometric Measurement of Different Physiological Parameters. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_11

Download citation

Publish with us

Policies and ethics