Skip to main content

Modeling Label Interactions in Multi-label Classification: A Multi-structure SVM Perspective

  • Conference paper
  • First Online:
Book cover Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Included in the following conference series:

Abstract

Multi-label classification has attracted much interest due to its wide applicability. Modeling label interactions and investigating their impact on classifier quality are crucial aspects of multi-label classification. In this paper, we propose a multi-structure SVM (called MSSVM) which allows the user to hypothesize multiple label interaction structures and helps to identify their importance in improving generalization performance. We design an efficient optimization algorithm to solve the proposed MSSVM. Extensive empirical evaluation provides fresh and interesting insights into the following questions: (a) How do label interactions affect multiple performance metrics typically used in multi-label classification? (b) Do higher order label interactions significantly impact a given performance metric for a particular dataset? (c) Can we make useful suggestions on the label interaction structure? and (d) Is it always beneficial to model label interactions in multi-label classification?

A. Kasinikota—This work was done when the author was at IISc, Bangalore, India.

A long version of this paper along with supplementary material is available at https://sites.google.com/site/pbalamuru/home/mssvm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balamurugan, P., Shevade, S., Sundararajan, S., Keerthi, S.S.: A sequential dual method for structural svms. In: SDM (2011)

    Chapter  Google Scholar 

  2. Beck, A.: The 2-coordinate descent method for solving double-sided simplex constrained minimization problems. JOTA 162(3), 892–919 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bi, W., Kwok, J.T.: Multilabel classification with label correlations and missing labels. In: AAAI (2014)

    Google Scholar 

  4. Dembczyński, K., Jachnik, A., Kotłlowski, W., Waegeman, W., Hüllermeier, E.: Optimizing the f-measure in multi-label classification: plug-in rule approach versus structured loss minimization. In: ICML (2013)

    Google Scholar 

  5. Dembszynski, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach. Learn. 88(1–2), 5–45 (2012)

    Article  MathSciNet  Google Scholar 

  6. Engelbrecht, H.A.: Efficient decoding of high-order hidden markov models. Ph.D. thesis, University of Stellenbosch (2007)

    Google Scholar 

  7. Finley, T., Joachims, T.: Training structural svms when exact inference is intractable. In: ICML (2008)

    Google Scholar 

  8. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61, 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  9. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: CIKM (2005)

    Google Scholar 

  10. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: PAKDD (2004)

    Chapter  Google Scholar 

  11. Gonçalves, A., Zuben, F.J.V., Banerjee, A.: Multi-label structure learning with ising model selection. In: IJCAI (2015)

    Google Scholar 

  12. Guo, Y., Gu, S.: Multi-label classification using conditional dependency networks. In: IJCAI (2011)

    Google Scholar 

  13. Guzman-Rivera, A., Batra, D., Kohli, P.: Multiple choice learning: learning to produce multiple structured outputs. In: NIPS (2012)

    Google Scholar 

  14. Hariharan, B., Vishwanathan, S.V., Varma, M.: Efficient max-margin multi-label classification with applications to zero-shot learning. Mach. Learn. 88(1–2), 127–155 (2012)

    Article  MathSciNet  Google Scholar 

  15. Huang, S.J., Zhou, Z.H.: Multi-label learning by exploiting label correlations locally. In: AAAI (2012)

    Google Scholar 

  16. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. AMS 7, 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  17. Kyriakopoulou, A., Kalamboukis, T.: Using clustering to enhance text classification. In: SIGIR (2007)

    Google Scholar 

  18. Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML (2001)

    Google Scholar 

  19. Lampert, C.H.: Maximum margin multi-label structured prediction. In: NIPS (2011)

    Google Scholar 

  20. Liu, W., Tsang, I.: On the optimality of classifier chain for multi-label classification. In: NIPS (2015)

    Google Scholar 

  21. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  22. Marchand, M., Su, H., Morvant, E., Rousu, J., Shawe-Taylor, J.S.: Multilabel structured output learning with random spanning trees of max-margin markov networks. In: NIPS (2014)

    Google Scholar 

  23. Mirzazadeh, F., Ravanbakhsh, S., Ding, N., Schuurmans, D.: Embedding inference for structured multilabel prediction. In: NIPS (2015)

    Google Scholar 

  24. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods, pp. 185–208 (1999)

    Google Scholar 

  25. Read, J., Martino, L., Olmos, P.M., Luengo, D.: Scalable multi-output label prediction: from classifier chains to classifier trellises. Pattern Recogn. 48(6), 2096–2109 (2015)

    Article  Google Scholar 

  26. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_17

    Chapter  Google Scholar 

  27. Su, H., Rousu, J.: Multilabel classification through random graph ensembles. In: ACML (2013)

    Google Scholar 

  28. Tan, M., Shi, Q., van den Hengel, A., Shen, C., Gao, J., Hu, F., Zhang, Z.: Learning graph structure for multi-label image classification via clique generation. In: CVPR (2015)

    Google Scholar 

  29. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 3, 1–13 (2007)

    Article  Google Scholar 

  30. Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: An Ensemble Method for Multilabel Classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38

    Chapter  Google Scholar 

  31. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  32. Wu, Q., Tan, M., Song, H., Chen, J., Ng, M.K.: Ml-forest: a multi-label tree ensemble method for multi-label classification. IEEE TKDE 28, 2665–2680 (2016)

    Google Scholar 

  33. Yu, C.N.J., Joachims, T.: Learning structural SVMs with latent variables. In: ICML (2009)

    Google Scholar 

  34. Yu, H.F., Jain, P., Kar, P., Dhillon, I.S.: Large-scale multi-label learning with missing labels. In: ICML (2014)

    Google Scholar 

  35. Zhai, S., Zhao, C., Xia, T., Wang, S.: A multi-label ensemble method based on minimum ranking margin maximization. In: ICDM (2015)

    Google Scholar 

  36. Zhang, M.L., Zhang, K.: Multi-label learning by exploiting label dependency. In: ACM SIGKDD (2010)

    Google Scholar 

  37. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40, 2038–2048 (2007)

    Article  Google Scholar 

  38. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE TKDE 26(8), 1819–1837 (2014)

    Google Scholar 

  39. Zhang, X., Graepel, T., Herbrich, R.: Bayesian online learning for multi-label and multi-variate performance measures. In: AISTATS (2010)

    Google Scholar 

Download references

Acknowledgments

The authors thank anonymous reviewers of the current and earlier versions of the paper for their useful comments. The second author thanks Prof. Francis Bach for the discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Balamurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kasinikota, A., Balamurugan, P., Shevade, S. (2018). Modeling Label Interactions in Multi-label Classification: A Multi-structure SVM Perspective. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics