Skip to main content

Functional Properties of Lignocellulosic Materials

  • Chapter
  • First Online:
Lignocellulosic Materials and Their Use in Bio-based Packaging

Abstract

Lignocellulosic materials have achieved a great recognition during the last years due to their structure and multiple functional properties. These materials when subjected to different pre-treatments are separated into cellulose, hemicellulose, and lignin, and subsequently, they can be converted into high value-added by-products with specific functional characteristics. Besides the chemical, physical and biological properties exhibited for the lignocellulosic fractions, their renewable nature, biodegradability, availability, and low cost, make them very attractive for the industry, mainly for the development of new multifunctional biopolymers with several applications in different fields. This chapter summarizes the main functional properties of cellulose, hemicellulose, lignin, and their derivatives, including mechanical, chemical, thermal, rheological, optical, and physiological properties, as well as the antioxidant and antimicrobial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alu’datt MH, Rababah T, Ereifej K, Alli I (2013) Distribution, antioxidant and characterisation of phenolic compounds in soybeans, flaxseed and olives. Food Chem 139(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Amendola D, De Faveri DM, Egües I, Serrano L, Labidi J, Spigno G (2012) Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresour Technol 107:267–274

    Article  CAS  PubMed  Google Scholar 

  • Azadfar M, Gao AH, Bule MV, Chen S (2015) Structural characterization of lignin: a potential source of antioxidants guaiacol and 4-vinylguaiacol. Int J Biol Macromol 75:58–66

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros LF, Cerqueira MA, Teixeira JA, Mussatto SI (2015) Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohyd Polym 127:347–354

    Article  CAS  Google Scholar 

  • Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI (2017) Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. J Food Eng 199:1–8

    Article  CAS  Google Scholar 

  • Ballesteros LF, Teixeira JA, Mussatto SI (2014) Selection of the solvent and extraction conditions for maximum recovery of antioxidant phenolic compounds from coffee silverskin. Food Bioprocess Technol 7(5):1322–1332

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6(2):1048–1054

    Article  CAS  Google Scholar 

  • Beejmohun V, Fliniaux O, Grand E, Lamblin F, Bensaddek L, Christen P, Kovensky J, Fliniaux M-A, Mesnard F (2007) Microwave-assisted extraction of the main phenolic compounds in flaxseed. Phytochem Anal 18(4):275–282

    Article  CAS  PubMed  Google Scholar 

  • Belgacem MN, Gandini A (2005) Surface modification of cellulose fibres. Polímeros 15(2):114–121

    Article  CAS  Google Scholar 

  • Bielecka M, Biedrzycka E, Majkowska A (2002) Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res Int 35(2):125–131

    Article  CAS  Google Scholar 

  • Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  • Bledzki A, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59(8):1329–1336

    Article  CAS  Google Scholar 

  • Boeriu CG, Bravo D, Gosselink RJ, Van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod. 20(2):205–218

    Article  CAS  Google Scholar 

  • Brenelli LB, Mandelli F, Mercadante AZ, De Moraes Rocha GJ, Rocco SA, Craievich AF, Goncalves AR, Da Cruz Centeno D, De Oliveira Neto M, Squina FM (2016) Acidification treatment of lignin from sugarcane bagasse results in fractions of reduced polydispersity and high free-radical scavenging capacity. Ind Crop Prod. 83:94–103

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohyd Polym 94(1):154–169

    Article  CAS  Google Scholar 

  • Callister JWD, Rethwisch DG (2012) Polymer structures. In: Callister WD, Rethwisch DG (eds) Fundamentals of materials science and engineering: an integrated approach. Wiley, Hoboken, New Jersey, pp 102–133

    Google Scholar 

  • Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Chen H (ed) Biotechnology of lignocellulose: theory and practice. Springer, Netherlands, Dordrecht, pp 25–71

    Chapter  Google Scholar 

  • Cho A-S, Jeon S-M, Kim M-J, Yeo J, Seo K-I, Choi M-S, Lee M-K (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48(3):937–943

    Article  CAS  PubMed  Google Scholar 

  • Conde E, Moure A, Domínguez H, Parajó JC (2011) Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT-Food Sci Technol 44(2):436–442

    Article  CAS  Google Scholar 

  • Crittenden R, Playne M (1996) Production, properties and applications of food-grade oligosaccharides. Trends Food Sci Technol 7(11):353–361

    Article  CAS  Google Scholar 

  • Delaney B, Nicolosi RJ, Wilson TA, Carlson T, Frazer S, Zheng G-H, Hess R, Ostergren K, Haworth J, Knutson N (2003) β-Glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. J Nutr 133(2):468–475

    Article  PubMed  Google Scholar 

  • Ding W, Calabri L, Chen X, Kohlhaas KM, Ruoff RS (2006) Mechanics of crystalline boron nanowires. Compos Sci Technol 66(9):1112–1124

    Article  CAS  Google Scholar 

  • Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. Ind Crop Prod 33(2):259–276

    Article  CAS  Google Scholar 

  • Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21(3):692–701

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10(1):162–165

    Article  CAS  Google Scholar 

  • George J, Sabapathi SN (2015) Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol Sci Appl. 8:45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gniechwitz D, Reichardt N, Blaut M, Steinhart H, Bunzel M (2007) Dietary fiber from coffee beverage: Degradation by human fecal microbiota. J Agr Food Chem 55(17):6989–6996

    Article  CAS  Google Scholar 

  • Gordobil O, Moriana R, Zhang L, Labidi J, Sevastyanova O (2016) Assesment of technical lignins for uses in biofuels and biomaterials: structure-related properties, proximate analysis and chemical modification. Ind Crop Prod 83:155–165

    Article  CAS  Google Scholar 

  • He Y, Pang Y, Liu Y, Li X, Wang K (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuel 22(4):2775–2781

    Article  CAS  Google Scholar 

  • Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    Article  CAS  Google Scholar 

  • Jenkins DJ, Leeds AR, Wolever TM, Goff DV, George K, Alberti M, Gassull MA, Derek T, Hockaday R (1976) Unabsorbable carbohydrates and diabetes: Decreased post-prandial hyperglycaemia. Lancet 308(7978):172–174

    Article  Google Scholar 

  • Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Gregor Svetec D, Virtanen S, Giacinti Baschetti M, Breen C, Aucejo S (2012) Renewable fibers and nio-based materials for packaging applications—a review of recent developments. Bioresour. 7(2):2506–2552

    Article  Google Scholar 

  • Kalia S, Kaith B, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272

    Article  CAS  Google Scholar 

  • Karthikesan K, Pari L, Menon VP (2010) Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents. Chem-Biol Interact 188(3):643–650

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Fukada S, Yamaizumi Z, Sugie S, Mori H (2000) Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem Toxicol 38(5):467–471

    Article  CAS  PubMed  Google Scholar 

  • Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: A review. Carbohyd Polym 87(2):963–979

    Google Scholar 

  • Kim M-J, Hyun J-N, Kim J-A, Park J-C, Kim M-Y, Kim J-G, Lee S-J, Chun S-C, Chung I-M (2007) Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agr Food Chem. 55(12):4802–4809

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Laurichesse S, Avérous L (2014) Chemical modification of lignins: Towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764

    Article  CAS  Google Scholar 

  • Levis S, Deasy P (2001) Production and evaluation of size reduced grades of microcrystalline cellulose. Int J Pharm 213(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol Adv 29(3):365–373

    Article  CAS  PubMed  Google Scholar 

  • Michelin M, Teixeira JA (2016) Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour Technol 216:862–869

    Article  CAS  PubMed  Google Scholar 

  • Moniz P, João L, Duarte LC, Roseiro LB, Boeriu CG, Pereira H, Carvalheiro F (2015) Fractionation of hemicelluloses and lignin from rice straw by combining autohydrolysis and optimised mild organosolv delignification. Bioresources 10(2):2626–2641

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI (2015) Generating biomedical polyphenolic compounds from spent coffee or silverskin. In: Preedy VR (ed) Coffee in health and disease prevention. Elsevier, pp 93–106

    Chapter  Google Scholar 

  • Neagu RC, Kristofer Gamstedt E, Bardage SL, Lindström M (2006) Ultrastructural features affecting mechanical properties of wood fibres. Wood Mater Sci Eng 1(3–4):146–170

    Article  Google Scholar 

  • Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat A (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B: Eng 75:176–200

    Article  CAS  Google Scholar 

  • Norgren M, Edlund H (2014) Lignin: Recent advances and emerging applications. Curr Opin Colloid Interface 19(5):409–416

    Article  CAS  Google Scholar 

  • Osorio E, Flores M, Hernández D, Ventura J, Rodríguez R, Aguilar CN (2010) Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Ind Crop Prod 31(1):153–157

    Article  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8(6):1934–1941

    Article  CAS  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  • Prado-Martin JG, Porto E, Corrêa CB, Alencar SM, Gloria EM, Cabral ISR, Aquino LM (2012) Antimicrobial potential and chemical composition of agro-industrial wastes. J Nat Prod 5(2):27–36

    Google Scholar 

  • Prasad KN, Hassan FA, Yang B, Kong KW, Ramanan RN, Azlan A, Ismail A (2011) Response surface optimisation for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm. peels. Food Chem 128(4):1121–1127

    Article  CAS  Google Scholar 

  • Rodríguez-Meizoso I, Jaime L, Santoyo S, Señoráns FJ, Cifuentes A, Ibáñez E (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed 51(2):456–463

    Article  CAS  Google Scholar 

  • Santana-Méridas O, González-Coloma A, Sánchez-Vioque R (2012) Agricultural residues as a source of bioactive natural products. Phytochem Rev 11(4):447–466

    Article  CAS  Google Scholar 

  • Shin HS, Satsu H, Bae M-J, Zhao Z, Ogiwara H, Totsuka M, Shimizu M (2015) Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem 168:167–175

    Article  CAS  PubMed  Google Scholar 

  • Simões J, Nunes FM, Domingues MdRM, Coimbra MA (2010) Structural features of partially acetylated coffee galactomannans presenting immunostimulatory activity. Carbohyd Polym 79(2):397–402

    Article  CAS  Google Scholar 

  • Snyder JF, Steele J, Dong H, Orlicki JA, Reiner RS, Rudie AW (2013) Optical properties of nanocellulose dispersions in water, dimethylformamide and poly(methyl methacrylate). Army Research Laboratory Report

    Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  CAS  PubMed  Google Scholar 

  • Van Loo J, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M, Kok N, Macfarlane G, Newton D, Quigley M (1999) Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr 81(02):121–132

    Article  PubMed  Google Scholar 

  • Varshney VK, Naithani S (2011) Chemical functionalization of cellulose derived from nonconventional sources. In: Kalia S (ed) Cellulose fibers: Bio-and nano-polymer composites. Springer, Berlin, Heidelberg, pp 43–60

    Chapter  Google Scholar 

  • Vuorela S, Kreander K, Karonen M, Nieminen R, Hämäläinen M, Galkin A, Laitinen L, Salminen J-P, Moilanen E, Pihlaja K (2005) Preclinical evaluation of rapeseed, raspberry, and pine bark phenolics for health related effects. J Agr Food Chem. 53(15):5922–5931

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ângelo Cerqueira .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ballesteros, L.F., Michelin, M., Vicente, A.A., Teixeira, J.A., Cerqueira, M.Â. (2018). Functional Properties of Lignocellulosic Materials. In: Lignocellulosic Materials and Their Use in Bio-based Packaging. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-92940-8_3

Download citation

Publish with us

Policies and ethics