Skip to main content

Human Genome

  • Chapter
  • First Online:
Introduction to Evolutionary Genomics

Part of the book series: Computational Biology ((COBO,volume 17))

  • 1831 Accesses

Abstract

The human genome can be considered as the representative of mammalian genomes. Basic characteristics of the human genome, such as the overall structure, protein coding genes and RNA genes, are first discussed. Personal genome sequencing and genomic heterogeneity are described next. We then discuss genetic changes to produce humanness, followed by discussion on human genome diversity. At the end, ancient human genomes are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gregory, T. R. (Ed.). (2005). The evolution of the genome. Burlington: Elsevier Academic.

    Google Scholar 

  2. Bickmore, W. A. (2001). Karyotype analysis and chromosome banding. Encyclopedia of Life Sciences http://web.udl.es/usuaris/e4650869/docencia/segoncicle/genclin98/recursos_classe_%28pdf%29/revisionsPDF/bandmethods2.pdf.

  3. International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  Google Scholar 

  4. Venter, J. C., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.

    Article  Google Scholar 

  5. International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.

    Article  Google Scholar 

  6. Imanishi, T., et al. (2004). Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biology, 2, 856–875.

    Article  Google Scholar 

  7. Clamp, M., et al. (2007). Distinguishing protein-coding and noncoding genes in the human genome. PNAS, 104, 19428–19433.

    Article  Google Scholar 

  8. Online Mendelian Inheritance in Man. http://www.ncbi.nlm.nih.gov/omim.

  9. Protein Analysis Through Evolutionary Relationships. http://www.pantherdb.org/.

  10. NCBI Homo sapiens Annotation Reference 108. https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Homo_sapiens/108/.

  11. The Human Gene Database. http://www.genecards.org/.

  12. HUGO Gene Nomenclature Committee database. https://www.genenames.org.

  13. H-InvDB. http://www.h-invitational.jp/hinv/ahg-db/statistics_ja.jsp.

  14. Imanishi, T. (2017). Chapter 4. Protein-coding and noncoding RNA genes. In Saitou, N. (Ed.), Evolution of the human genome, volume I. Tokyo: Springer.

    Chapter  Google Scholar 

  15. GtRNAdb. http://gtrnadb.ucsc.edu/genomes/eukaryota/Hsapi19/.

  16. Robicheau, B., et al. (2017). Ribosomal RNA genes contribute to the formation of pseudogenes and junk DNA in the human genome. Genome Biology and Evolution, 9, 380–397.

    Article  Google Scholar 

  17. snoRNABase. https://www-snorna.biotoul.fr.

  18. miRBase. http://www.mirbase.org.

  19. Hong, C. C., et al. (2018). An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 543, 199–204.

    Google Scholar 

  20. Babarinde, I., et al. (unpublished).

    Google Scholar 

  21. The ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.

    Article  Google Scholar 

  22. Thurman, R. E., et al. (2012). The accessible chromatin landscape of the human genome. Nature, 489, 75–82.

    Article  Google Scholar 

  23. Neph, S., et al. (2012). An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 489, 83–90.

    Article  Google Scholar 

  24. Gestein, M. B. (2012). Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91–100.

    Article  Google Scholar 

  25. Djebali, S., et al. (2012). Landscape of transcription in human cells. Nature, 489, 101–108.

    Article  Google Scholar 

  26. Birney, E., et al. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447, 799–816.

    Article  Google Scholar 

  27. van Bakel, H., Nislow, C., Blencowe, B. J., & Hughes, T. R. (2010). Most “dark matter” transcripts are associated with known genes. PLoS Biology, 8, e1000371.

    Article  Google Scholar 

  28. Pennisi, E. (2012). ENCODE project writes eulogy for Junk DNA. Science, 337, 1159–1161.

    Article  Google Scholar 

  29. Eddy, S. (2012). The C-value paradox, junk DNA and ENCODE. Current Biology, 22, R898.

    Article  Google Scholar 

  30. Graur, D., et al. (2013). On the immortality of television sets: function in the human genome according to the evolution-free gospel of ENCODE. Genome Biology and Evolution, 5(3), 578–590. (published online on February 20, 2013).

    Article  Google Scholar 

  31. Ohno, S. (1972). So much “junk” DNA in our genome. Brookhaven Symposium in Biology, 23, 366–370.

    Google Scholar 

  32. Jurka, J., & Smith, T. (1988). A fundamental division in the Alu family of repeated sequences. Proceedings of the National Academy of Sciences USA, 85, 4775–4778.

    Article  Google Scholar 

  33. Price, A. L., Eskin, E., & Pevzner, P. A. (2004). Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Research, 14, 2245–2252.

    Article  Google Scholar 

  34. Wu, J. C., & Manuelidis, L. (1980). Sequence definition and organization of a human repeated DNA. Journal of Molecular Biology, 142, 363–386.

    Article  Google Scholar 

  35. Saitou, N. (2005). Evolution of hominoids and the search for a genetic basis for creating humanness. Cytogenetic and Genome Research, 108, 16–21.

    Article  Google Scholar 

  36. Fujiyama, A., et al. (2002). Construction and analysis of a human-chimpanzee comparative clone map. Science, 295, 131–134.

    Article  Google Scholar 

  37. The Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chim- panzee genome and comparison with the human genome. Nature, 437, 69–87.

    Article  Google Scholar 

  38. Clark, A. G., et al. (2003). Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science, 302, 1960–1963.

    Article  Google Scholar 

  39. Zhang, J. (2003). Frequent false detection of positive selection by the likelihood method with branch-site models. Molecular Biology and Evolution, 21, 1332–1339.

    Article  Google Scholar 

  40. Kitano, T., Liu, Y.-H., Ueda, S., & Saitou, N. (2004). Human specific amino acid changes found in 103 protein coding genes. Molecular Biology and Evolution, 21, 936–944.

    Article  Google Scholar 

  41. Prabhakar, S., et al. (2008). Human-specific gain of function in a developmental enhancer. Science, 321, 1346–1350.

    Article  Google Scholar 

  42. Duret, L., & Galtier, N. (2009). Comment on “human-specific gain of function in a developmental enhancer”. Science, 323, 714.

    Article  Google Scholar 

  43. Sumiyama, K., & Saitou, N. (2011). Loss-of–function mutation in a repressor module of human-specifically activated enhancer HACNS1. Molecular Biology and Evolution, 28, 3005–3007.

    Article  Google Scholar 

  44. The International SNP Map Working Group. (2001). A map of human genome sequence varia- tion containing 1.42 million single nucleotide polymorphisms. Nature, 409, 928–933.

    Article  Google Scholar 

  45. International HapMap Consortium. (2005). The haplotype map of the human genome. Nature, 437, 1299–1320.

    Article  Google Scholar 

  46. Li JZ, et al. (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science, 319, 1100–1104.

    Article  Google Scholar 

  47. Rosenberg, N. A., et al. (2002). Genetic structure of human populations. Science, 298, 2381–2385.

    Article  Google Scholar 

  48. Yamaguchi-Kabata, Y., et al. (2008). Population structure of Japanese based on SNP genotypes from 7,001 individuals in comparison to other ethnic groups: Effects on population-based association studies. American Journal of Human Genetics, 83, 445–456.

    Article  Google Scholar 

  49. Japanese Archipelago Human Population Genetics Consortium (Jinam, T. et al.). (2012). The history of human populations in the Japanese Archipelago inferred from genomewide SNP data with a special reference to the Ainu and the Ryukyuan populations. Journal of Human Genetics, 57, 787–795.

    Article  Google Scholar 

  50. Kanzawa-Kiriyama, H., et al. (2016). A partial nuclear genome of the Jomons who lived 3,000 years ago in Fukushima, Japan. Journal of Human Genetics (advance online publication).

    Google Scholar 

  51. Pinkel, D., et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20, 207–211.

    Article  Google Scholar 

  52. Sebat, J., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305, 525–528.

    Article  Google Scholar 

  53. Redon, R., et al. (2006). Global variation in copy number in the human genome. Nature, 444, 444–454.

    Article  Google Scholar 

  54. Milles, R. E., et al. (2006). An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Research, 16, 1182–1190.

    Article  Google Scholar 

  55. The 1000 Genomes Project Consortium. (2010). A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073.

    Google Scholar 

  56. Saitou, N., & Ueda, S. (1994). Evolutionary rate of insertions and deletions in non-coding nucleotide sequences of primates. Molecular Biology and Evolution, 11, 504–512.

    Google Scholar 

  57. Levy, S., et al. (2007). The diploid genome sequence of an individual human. PLoS Biology, 5, e254.

    Article  Google Scholar 

  58. Wheeler, D. A., et al. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872–876.

    Article  Google Scholar 

  59. Schster, S. C., et al. (2010). Complete Khoisan and Bantu genomes from southern Africa. Nature, 463, 943–947.

    Article  Google Scholar 

  60. Ju, Y.-S., et al. (2011). Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. Nature Genetics, 42, 931–936.

    Google Scholar 

  61. Roach, J. C., et al. (2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328, 636–639.

    Article  Google Scholar 

  62. Conrad, D. F., et al. (2011). Variation in genome-wide mutation rates within and between human families. Nature Genetics, 43, 712–714.

    Article  Google Scholar 

  63. The 1000 Genomes Project Consortium. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56–65.

    Google Scholar 

  64. The 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526, 68–74.

    Google Scholar 

  65. International Genome Sample Resource. http://www.internationalgenome.org.

  66. Nagasaki, M., et al. (2015). Rare variant discovery by deep whole-genome sequencing of 1070 Japanese Individuals. Nature Communications, 6, 8018.

    Article  Google Scholar 

  67. Telenti, A., et al. (2016). Deep sequencing of 10,000 human genomes. Proceedings of the National Academy of Sciences USA, 113, 11901–11906.

    Article  Google Scholar 

  68. Genome Asia 100 K. http://www.genomeasia100k.com.

  69. https://www.nih.gov/news-events/news-releases/nih-genome-sequencing-program-targets-genomic-bases-common-rare-disease.

  70. The 100,000 Genomes Project. https://www.genomicsengland.co.uk/the-100000-genomes-project/.

  71. Berg, P. (2006). Origins of the human genome project: Why sequence the human genome when 96% of it is Junk? American Journal of Human Genetics, 79, 603–605.

    Article  Google Scholar 

  72. https://cancergenome.nih.gov/newsevents/newsannouncements/pancancer_atlas.

  73. https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html.

  74. Saitou, N. (2018). Evolution of cancer genome in one individual’s life (in Japanese). Jikken Igaku, 36, 241–244.

    Google Scholar 

  75. Greenman, C., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446, 153–158.

    Article  Google Scholar 

  76. Wood, L. D., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.

    Article  Google Scholar 

  77. Lin, S., et al. (2015). Extremely high genetic diversity in a single tumorpoints to prevalence of non-Darwinian cell evolution. Proceedings of the National Academy of Sciences USA, 113, E6496–E6505.

    Google Scholar 

  78. Uchi, R., et al. (2016). Integrated multiregional analysis proposing a new model of colorectal cancer evolution. PLoS Genetics, 12, e1005778.

    Article  Google Scholar 

  79. Erickson, R. P. (2003). Somatic gene mutation and human disease other than cancer. Mutation Research, 543, 125–136.

    Article  Google Scholar 

  80. Erickson, R. P. (2010). Somatic gene mutation and human disease other than cancer: An update. Mutation Research, 705, 96–106.

    Article  Google Scholar 

  81. Inoue, I., & Nakaoka, H. (2017). Disease-related genes from population genetic aspect and their functional significance. In N. Saitou (Ed.), Evolution of the Human Genome (Vol. I, pp. 273–283). Tokyo: Springer.

    Chapter  Google Scholar 

  82. Noonan, J. P., et al. (2006). Sequencing and analysis of Neanderthal genomic DNA. Science, 314, 1113–1118.

    Article  Google Scholar 

  83. Green, R. E., et al. (2006). Analysis of one million base pairs of Neanderthal DNA. Nature, 444, 330–336.

    Article  Google Scholar 

  84. Wall, J. D., & Kim, S. K. (2007). Inconsistencies in Neanderthal genomic DNA sequences. PLoS Genetics, 3, 1862–1866.

    Article  Google Scholar 

  85. Green, R., et al. (2010). A draft sequence of the Neanderthal genme. Science, 328, 710–722.

    Article  Google Scholar 

  86. Yotova, V., et al. (2011). An X-linked haplotype of Neanderthal origin is present among all non-African populations. Molecular Biology and Evolution, 28, 1957–1962.

    Article  Google Scholar 

  87. Eriksson, A., & Manica, A. (2012). Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proceedings of the National Academy of Sciences USA, 109, 13956–13960.

    Article  Google Scholar 

  88. Reich, D., et al. (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–1060.

    Article  Google Scholar 

  89. Meyer M., et al. (2012). A high-coverage genome sequence from an archaic Denisovan individual. Science (epub ahead of print).

    Google Scholar 

  90. Reich, D., et al. (2011). Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. American Journal of Human Genetics, 89, 1–13.

    Article  Google Scholar 

  91. Rasmussen, M., et al. (2010). Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature, 463, 757–762.

    Article  Google Scholar 

  92. Rasmussen, M., et al. (2011). An Aboriginal Australian genome reveals separate human dispersals into Asia. Science, 334, 94–98.

    Article  Google Scholar 

  93. Keller, A., et al. (2012). New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nature Communications, 3, 698.

    Article  Google Scholar 

  94. Skoglund, P., et al. (2012). Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science, 336, 466–469.

    Article  Google Scholar 

  95. Fu, Q., et al. (2014). Genome sequence of a 45000-year-old modern human from western Siberia. Nature, 514, 445–449.

    Article  Google Scholar 

  96. Prüfer, K., et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–49.

    Article  Google Scholar 

  97. Raghavan, M., et al. (2014). Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature, 505, 87–91.

    Article  Google Scholar 

  98. Bentley, D. R., et al. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–59.

    Article  Google Scholar 

  99. Wang, J., et al. (2008). The diploid genome sequence of an Asian individual. Nature, 456, 60–66.

    Article  Google Scholar 

  100. Ley, T. J., et al. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456, 66–72.

    Article  Google Scholar 

  101. Ahn, S. M., et al. (2009). The first Korean genome sequence and analysis: Full genome sequencing for a socio-ethnic group. Genome Research, 19, 1622–1629.

    Article  Google Scholar 

  102. Kim, J.-I., et al. (2009). A highly annotated whole-genome sequence of a Korean individual. Nature, 460, 1011–1015.

    Article  Google Scholar 

  103. Fujimoto, A., et al. (2010). Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nature Genetics, 42, 931–936.

    Article  Google Scholar 

  104. Saitou, N. (2007). Introduction to genome evolution studies (in Japanese). Tokyo: Kyoritsu Shuppan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruya Saitou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saitou, N. (2018). Human Genome. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-92642-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92642-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92641-4

  • Online ISBN: 978-3-319-92642-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics