Skip to main content

Saprophagy, Developing on Decay

  • Chapter
  • First Online:

Part of the book series: Zoological Monographs ((ZM,volume 4))

Abstract

Saprophages obtain nourishment from dead organisms and associated material and are considered in this chapter. The diet of a saprophagous larva consists typically of microbes responsible or associated with decay processes, such as bacteria and yeasts, moulds and sometimes algae and protozoa. Larvae imbibe liquid suspensions of these organisms and may or may not filter them and expel the excess liquid back into the environment. Relationships between saprophagous larvae and microbes vary from straightforward exploitation to under-crowding or Allee effects and mutualisms. Their influence on the dynamics of decay processes is equally varied from having little effect to spreading, maintaining and accelerating it. Saprophagy appears to be the groundplan cyclorrhaphan larval feeding mode and a shift from predatory ancestors. Numerous small to large saprophagous cyclorrhaphan lineages exist, and switches to and from saprophagy appear to be frequent. Obligate saprophages are a diverse source of specialisations, and facultative saprophages provide insight into switching routes between feeding modes. Diverse communities of saprophagous larvae can be found at more or less continuous microhabitats and at an almost limitless range of discrete ones where competition for resources may be intense. Niche partitioning and ecological succession are also characteristic and due to such processes saprophagous larvae make significant contributions to cyclorrhaphan diversification and to terrestrial habitat biodiversity and maintenance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander KNA (2002) The invertebrates of living and decaying timber in Britain and Ireland – a provisional annotated check list. English Nat Res Rpts, No 467

    Google Scholar 

  • Allen TC, Riker AJ (1932) A rot of apple fruit caused by Phytomonas melophthora n sp., following invasion by the apple maggot. Phytopathology 22:557–571

    Google Scholar 

  • Altincicek B, Vilcinskas A (2007) Analysis of the immune-inducible transcriptome from microbial stress resistant, rat-tailed maggots of the drone fly Eristalis tenax. BMC Genomics 8:326. https://doi.org/10.1186/1471-2164-8-326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anagnostou C, Dorsh M, Rohlfs M (2010) Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 136:1–11

    Article  Google Scholar 

  • Baer WS (1931) The treatment of chronic osteomyelitis with the maggot (larva of the blow fly). J Bone Joint Surg 31:438–475

    Google Scholar 

  • Bakula M (1970) Antibacterial compounds in the cell-free haemolymph of Drosophila melanogaster. J Insect Physiol 16:185–197

    Article  CAS  PubMed  Google Scholar 

  • Basden EB (1952) Some Drosophilidae (Diptera) of the British Isles. Entomol Mon Mag 88:200–201

    Google Scholar 

  • Baumberger JP (1919) A nutritional study of insects, with special reference to microorganisms and their substrata. J Exp Zool 28:1–81

    Article  CAS  Google Scholar 

  • Beaver RA (1972) Ecological studies on Diptera breeding in Dead Snails, 1. Biology of the species found in Cepaea nemoralis (L). Entomologist 105:41–52

    Google Scholar 

  • Becker R (1910) Zur kenntnis der mundteile und des kopfes der dipteren-larven. Zool Jahrb Abt Anat 29:281–314

    Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, Oxford

    Google Scholar 

  • Behar A, Jurkevitch E, Yuval B (2008) Bringing back the fruit into fruit fly-bacteria interactions. Mol Ecol 17:1375–1386

    Article  CAS  PubMed  Google Scholar 

  • Bixler GD, Bhushan B (2012) Biofouling: lessons from nature. Philos Trans R Soc A 370:2381–2417

    Article  CAS  Google Scholar 

  • Blanckenhorn WU, Pemberton AJ, Bussiere LF, Roembke J, Floate KD (2010) A review of the natural history and laboratory culture methods for the yellow dung fly, Scathophaga stercoraria. J Insect Sci 10:1–17

    Article  Google Scholar 

  • Bogdanow EA (1906) Über das züchten der larven der gewöhnlichen fleischfliege (Calliphora vomitoria) in sterilisierten nährmitteln. Archiv Ges Physiol Mensch Tiere 113:97–105

    Article  Google Scholar 

  • Bogdanow EA (1908) Über die abhängigkeit des wachstums der fliegenlarven von bakterien und fermenten und über variabilität und vererbung bei den fleischfliegen. Archiv Anat Physiol Abt Suppl 1908:173–200

    Google Scholar 

  • Boman HG, Hultmark D (1987) Cell-free immunity in insects. Ann Rev Microbiol 41:103–126

    Article  CAS  Google Scholar 

  • Boman AG, Nilsson-Faye I, Kerstin P, Rasmuson T (1974) Insect immunity I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect Immun 10:136–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borash DJ, Teotonio H, Rose MR, Mueller LD (2000) Density-dependent natural selection in Drosophila: correlations between feeding rate, development time and viability. J Evol Biol 13:181–187

    Article  Google Scholar 

  • Briggs JD (1958) Humoral immunity in lepidopterous larvae. J Exp Zool 138:155–188

    Article  CAS  PubMed  Google Scholar 

  • Brock ML, Wiegert RG, Brock TD (1969) Feeding by Paracoenia and Ephydra (Diptera: Ephydridae) on the microorganisms of hot springs. Ecology 50:192–200

    Article  Google Scholar 

  • Buck M (1997) Sphaeroceridae (Diptera) reared from various types of carrion and other decaying substrates in Southern Germany, including new faunistic data on some rarely collected species. Eur J Entomol 94:137–151

    Google Scholar 

  • Buser CC, Newcomb RD, Gaskett AC, Goddard MR (2014) Niche construction initiates the evolution of mutualistic interactions. Ecol Lett 17:1257–1264

    Article  PubMed  Google Scholar 

  • Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V (2005) ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 55:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Catts EP (1992) Problems in estimating the postmortem interval in death investigations. J Agric Entomol 9:245–255

    Google Scholar 

  • Chadwick JS (1975) Hemolymph changes with infection or induced immunity in insect and ticks. In: Maramorosh K, Shope RE (eds) Invertebrate immunity. Academic Press, New York, pp 241–536

    Chapter  Google Scholar 

  • Chapman RF (author), Simpson SJ, Douglas AE (eds) (2012) The insects: structure and function. Cambridge University Press

    Google Scholar 

  • Čičková H, Pastor B, Kozánek M, Martínez-Sánchez A, Rojo S, Takáč P (2012) Biodegradation of pig manure by the housefly, Musca domestica: a viable ecological strategy for pig manure management. PLoS One 7(3):e32798. https://doi.org/10.1371/journal.pone.0032798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coe RL (1938) Rediscovery of Callicera yerburyi Verrall (Diptera: Syrphidae); its breeding habits, with a description of the larva. Entomologiste 71:97–102

    Google Scholar 

  • Colyer CN (1954) More about the “coffin fly” Conicera tibialis Schmitz (Diptera: Phoridae). Entomologiste 87:130–132

    Google Scholar 

  • Cooper DM (1960) Food preferences of larval and adult Drosophila. Evolution 14:41–55

    Article  Google Scholar 

  • Creager DB, Spruijt FJ (1935) The relation of certain fungi to larval development of Eumerus tuberculatus Rond. (Syrphidae, Diptera). Ann Entomol Soc Am 28:425–437

    Article  Google Scholar 

  • Dimarcq J-L, Keppi E, Dunbar B, Lambert J, Reichhart J-M, Hoffmann D, Rankine SM, Fothergill JE, Hoffmann JA (1988) Insect immunity: purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phorrnia terranovae and complete amino-acid sequence of the predominant member, diptericin A. Eur J Biochem 171:17–22

    Article  CAS  PubMed  Google Scholar 

  • Dimarcq J-L, Zachary D, Hoggmann JA, Hoffmann D, Reichhart JM (1990) Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae. EMBO J 9:2507–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Disney H (1994) Scuttle flies: The Phoridae. Springer, Heidelberg

    Chapter  Google Scholar 

  • Dowding VM (1967) The function and ecological significance of the pharyngeal ridges occurring in the larvae of some cyclorrhaphous Diptera. Parasitol (Cam) 57:371–388

    Article  Google Scholar 

  • Drew RAI, Lloyd AC (1987) Relationship of Fruit Flies (Diptera: Tephritidae) and their bacteria to host plants. Ann Entomol Soc Am 80:629–636

    Article  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects – diversity in structure and function. Microbiol Rev 37:699–735

    CAS  Google Scholar 

  • Erdmann GR, Khalil SK (1986) Isolation and identification of two antibacterial agents produced by a strain of Proteus mirabilis isolated from larvae of the screworm (Cochliomyia hominivorax) (Diptera: Calliphoridae). J Med Entomol 23:208–211

    Article  CAS  PubMed  Google Scholar 

  • Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1999a) Association between feeding rate and parasitoid resistance in Drosophila melanogaster. Evolution 53:1302–1305

    Article  CAS  PubMed  Google Scholar 

  • Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1999b) The relative fitness of Drosophila melanogaster (Diptera, Drosophilidae) that have successfully defended themselves against the parasitoid Asobara tabida (Hymenoptera, Braconidae). J Evol Biol 12:123–128

    Article  Google Scholar 

  • Ferrar P (1979) The immature stages of dung-breeding muscoid flies in Australia, with notes on the species, and keys to larvae and puparia. Aust J of Zool Suppl Ser 27:1–106

    Article  Google Scholar 

  • Ferrar P (1987) A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. Entomon 8:1–907

    Google Scholar 

  • Frew JGH (1928) A technique for the cultivation of insect tissues. J Exp Biol 6:1–11

    Google Scholar 

  • Gennard DE (2007) Forensic entomology, an introduction. Wiley, Chichester

    Google Scholar 

  • Gilbert F (1990) Size, life history, phylogeny and feeding specialization in insect predators. In: Gilbert F (ed) Insect life cycles: genetics, evolution and coordination. Springer, Berlin, pp 101–124

    Chapter  Google Scholar 

  • Goodbrod JR, Goff ML (1990) Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture. J Med Entomol 27:338–343

    Article  CAS  PubMed  Google Scholar 

  • Götz P (1986) Mechanisms of encapsulation in dipteran hosts. In: Lackie AM (ed) Immune mechanisms in invertebrate vectors. Claredon, Oxford, 19pp

    Google Scholar 

  • Gunn A, Bird J (2011) The ability of the blowflies Calliphora vomitoria (Linnaeus), Calliphora vicina (Rob-Desvoidy) and Lucilia sericata (Meigen) (Diptera: Calliphoridae) and the muscid flies Muscina stabulans (Fallen) and Muscina prolapsa (Harris) (Diptera: Muscidae) to colonise buried remains. Forensic Sci Int 207:198–204

    Article  PubMed  Google Scholar 

  • Guyenot E (1906) Sur le mode de nutrition de quelques larves de mouches. CR Soc Biol Paris 61:634–635

    Google Scholar 

  • Guyenot E (1907) L’appareil digestif et la digestion de quelques larves de mouches. Bull Sci Fr Belg 41:353–370

    Google Scholar 

  • Hagen KS (1966) Dependence of the olive-fly, Dacus oleae, larvae on symbosis with Pseudomonas savastoni for the utilisation of olive. Nature 209:423

    Article  Google Scholar 

  • Hartley JC (1963) The cephalopharyngeal apparatus of syrphid larvae and its relationship to other Diptera. Proc Zool Soc Lond 141:261–280

    Article  Google Scholar 

  • Hassell MP (1976) The dynamics of competition and predation. Studies in biology No 72, 68pp

    Google Scholar 

  • Hayes MJ, Levine TP, Wilson RH (2016) Identification of nanopillars on the cuticle of the aquatic larvae of the drone fly (Diptera: Syrphidae). J Insect Sci 16:1–7

    Article  CAS  Google Scholar 

  • Healey IN, Russell-Smith A (1971) Abundance and feeding preferences of fly larvae in two woodland soils. In: Proceedings of 4th international colloquium on soil zoology, pp 177–191

    Google Scholar 

  • Hennig W (1935) Der filterapparat im pharynx der cyclorrhaphen-larven und die biologische deutung der dipteren-larven. Zool Anz 111:131–139

    Google Scholar 

  • Hering EM (1943) Dipteren-biologien I. Mitt Deut Ent Gesell 12:16

    Google Scholar 

  • Hobson RP (1931) Studies on the nutrition of blow-fly larvae I. Structure and function of the alimentary tract. J Exp Biol 8:109–123

    CAS  Google Scholar 

  • Hodge S, Arthur W (1997) Direct and indirect effects of Drosophila larvae on the growth of moulds. Entomologiste 116:198–204

    Google Scholar 

  • Hoffman JA, Hetru C, Reichhart J-M (1993) The humoral antibacterial response of Drosophila. FEBS Lett 325:63–66

    Article  Google Scholar 

  • Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38

    Article  CAS  PubMed  Google Scholar 

  • Janzen D (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713

    Article  CAS  Google Scholar 

  • Jones MG (1979) Observations on the biology of Lonchoptera lutea Panzer (Diptera: Lonchopteridae) from cereal crops. Bull Ent Res 69:637–643

    Article  Google Scholar 

  • Jones CD (2005) The genetics of adaptation in Drosophila sechellia. In: Mauricio R (ed) Genetics of adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht

    Google Scholar 

  • Joshi A, Mueller LD (1988) Evolution of higher feeding rate in Drosophila due to density-dependent natural selection. Evolution 42:1090–1093

    Article  PubMed  Google Scholar 

  • Joshi A, Mueller LD (1996) Density-dependent natural selection in Drosophila: trade-offs between larval food acquisition and utilization. Evol Ecol 10:463–474

    Article  Google Scholar 

  • Kadavy AR, Plantz B, Shaw CA, Myatt J, Kokjohn TA, Nickerson KW (1999) Microbiology of the Oil Fly, Helaeomyia petrolei. Appl Environ Microbiol 65:1477–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kambysellis MP, Craddock EM (1997) Ecological and reproductive shifts in the diversification of the endemic Hawaiian Drosophila. In: Givnish TI, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, New York

    Google Scholar 

  • Kareiva P, Odell G (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am Nat 130:233–270

    Article  Google Scholar 

  • Keilin D (1912) Structure du pharynx en fonction du regime chez les larves des Diptères cyclorhaphes. Comptes rendus hebdomadaires des seances de l’académie Paris 155:1548–1550

    Google Scholar 

  • Keilin D (1913) Sur des coinditions de nutrition de certaines larves de Diptéres parasites de fruits. Cr Seanc Soc Biol 74:24–26

    Google Scholar 

  • Keilin D (1915) Recherches sur les larves de Dipteres cyclorrhaphes. Bull Sci Fr Bel 49:15–198

    Google Scholar 

  • Keilin D, Tate P (1930) On certain semi-carnivorous Anthomyid larvae. Parasitol (Cam) 22:168–181

    Article  Google Scholar 

  • Keiper JP, Walton WE (2000) Biology and immature stages of Brachydeutera sturtevanti (Diptera: Ephydridae), a hyponeustic generalist. Ann Entomol Soc Am 93:468–475

    Article  Google Scholar 

  • Kerridge A, Lappin-Scott H, Stevens JR (2005) Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med Vet Entomol 19:333–337

    Article  CAS  PubMed  Google Scholar 

  • Kneidel KA (1984a) The influence of carcass taxon and size on species composition of carrion-breeding Diptera. Am Midl Nat 111:57–63

    Article  Google Scholar 

  • Kneidel KA (1984b) Competition and disturbance in communities of carrion-breeding Diptera. J Anim Ecol 53:849–865

    Article  Google Scholar 

  • Kraaijeveld AR, Godfray HCJ (1999) Geographic patterns in the evolution of resistance and virulence in Drosophila and its parasitoids. Am Nat 153:561–574

    Article  Google Scholar 

  • Kraaijeveld AR, van Alphen JMJ (1995) Geographical variation in encapsulation ability of Drosophila melanogaster larvae and evidence for parasitoid-specific components. Evol Ecol 9:10–17

    Article  Google Scholar 

  • Krivosheina NP (2008) Macromycete fruit bodies as a habitat for Dipterans (Insecta, Diptera). Entomol Rev 88:778–792

    Article  Google Scholar 

  • Krüger F (1926) Biologie und morphologie einiger Syrphiden-larven. Z Morph Okol Tiere 6:83–149

    Article  Google Scholar 

  • Lambert J, Keppi E, Dimarcq J-L, Wicker C, Reichhart J-M, Dunbar B, Lepage P, Van Dorsselaer A, Hoffmann J, John Fothergill J, Hoffmann D (1989) Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci 86:262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauzon CR (2003) Symbiotic relationships of tephritids. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC, New York, pp 115–129

    Chapter  Google Scholar 

  • Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defence of Drosophila melanogaster. Annu Rev Immol 25:697–743

    Article  CAS  Google Scholar 

  • Lussenhop J, Kumar R, Wicklow DT, Lloyd JE (1980) Insect effects on bacteria and fungi in cattle dung. Oikos 34:54–58

    Article  Google Scholar 

  • MacGowan I, Rotheray GE (2008) British Lonchaeidae (Diptera, Cyclorrhapha, Acalyptratae). Handbks Ident Br Insects 10:1–142

    Google Scholar 

  • Mackerras MJ, Freney MR (1933) Observations on the nutrition of maggots of Australian blowflies. J Exp Biol 10:237–246

    CAS  Google Scholar 

  • Mahmoud M, Bahgat M, Zalat S, Dewedar A (1999) Eristalinus larvae and the role of bacteria in their feeding. J Union Arab Biologists Cairo Zool 11A:417–433

    Google Scholar 

  • Markow TA, O’Grady PM (2008) Reproductive ecology of Drosophila. Funct Ecol 22:747–759

    Article  Google Scholar 

  • Martínez-Falcón AP, Marcos-García MA, Moreno CE, Rotheray GE (2011) A critical role for Copestylum larvae (Diptera, Syrphidae) in the decomposition of cactus forests. J Arid Environ 78:41–48

    Article  Google Scholar 

  • McLean IFG (2000) Beneficial Diptera and their role in decomposition. In: Papp L, Darvas B (eds) Contributions manual palaearctic Diptera, vol 1. Science Herald, Budapest, pp 491–517

    Google Scholar 

  • Meier R (1995) Cladistic analysis of the Sepsidae (Cyclorrhapha: Diptera) based on a comparative scanning electron microscopic study of larvae. Syst Entomol 20:99–128

    Article  Google Scholar 

  • Mumcuoglu KY, Miller J, Mumcuoglu M, Friger M, Tarshis M (2001) Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae). J Med Entomol 38:161–166

    Article  CAS  PubMed  Google Scholar 

  • Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A (2016) Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc B 371:20150290. https://doi.org/10.1098/rstb.2015.0290

    Article  CAS  Google Scholar 

  • Narchuk EP (1985) Adaptions of Cyclorrhaphan larvae (Diptera) for the inhabitation of living Plants. In: Skarlato OA (ed) Systematics of Diptera (Insecta): ecological and morphological principles. Oxonian Press, New Delhi, pp 97–101

    Google Scholar 

  • Okada M, Natori S (1983) Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (flesh-fly) larvae. Biochem J 211:727–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada M, Natori S (1984) Mode of action of a bactericidal protein induced in the haemolymph of Sarcophaga peregrina (flesh-fly) larvae. Biochem J 222:119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker GA (1972) Reproductive behaviour of Sepsis cynipsea (L.) (Diptera: Sepsidae) I. A preliminary analysis of the reproductive strategy and its associated behaviour patterns. Behaviour 41:172–205

    Article  Google Scholar 

  • Petri L (1909) Ricerche sopra i batteri intestinali della mosca olearia. Memorie della Regia Stazione di Patologia Vegetale di Roma, Roma

    Google Scholar 

  • Pye AE, Bowman HG (1977) Insect immunity: III. Purification and partial characterization of immune protein P5 from hemolymph of Hyalophora cecropia pupae. Infect Immun 17:408–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricarte A, Marcos-García MA, Hancock EG, Rotheray GE (2015) Neotropical Copestylum Macquart (Diptera: Syrphidae) breeding in fruits and flowers, including 7 new species. PLoS One 10:1–58. https://doi.org/10.1371/journal.pone.0142441

    Article  CAS  Google Scholar 

  • Roberts MJ (1970) The structure of the mouthparts of Syrphid larvae (Diptera) in relation to feeding habits. Acta Zool 51:43–65

    Article  Google Scholar 

  • Roberts MJ (1971) The structure of the mouthparts of some calypterate dipteran larvae in relation to their feeding habits. Acta Zool 52:171–188

    Article  Google Scholar 

  • Roháček J (2013) The fauna of Acalyptrate families Trixoscelididae, Chyromyidae and Sphaeroceridae (Diptera) in the Gemer area (Central Slovakia): supplement 2. Čas Slez Muz Opava (A) 62:155–172

    Google Scholar 

  • Rohdendorf BB (1974) The historical development of Diptera. University of Alberta Press, Edmonton, AB

    Google Scholar 

  • Rohlfs M (2005) Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front Zool 2:2–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotheray GE (1996) The larva of Brachyopa scutellaris Robineau-Desvoidy (Diptera: Syrphidae), with a key to and notes on the larvae of British Brachyopa species. Entomol Gaz 47:199–205

    Google Scholar 

  • Rotheray GE (1999) Descriptions and a key to the larval and puparial stages of north-west European Volucella (Diptera, Syrphidae). Studia Dipterol 6:103–116

    Google Scholar 

  • Rotheray GE (2014) Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae). Zootaxa 3900:50–76

    Article  PubMed  Google Scholar 

  • Rotheray GE (2016) Improving knowledge of the cyclorrhaphan larva (Diptera). J Nat Hist 50:2169–2198

    Article  Google Scholar 

  • Rotheray GE, Akre K (2013) The early stages of Neoleria maritima (Villeneuve) (Diptera, Heleomyzidae) reared from a Cepeae snail. Dipt Digest 20:141–149

    Google Scholar 

  • Rotheray GE, Gilbert F (2011) The natural history of hoverflies. Forrest Text, Cardigan

    Google Scholar 

  • Rotheray GE, Lyszkowski R (2015) Diverse mechanisms of feeding and movement in Cyclorrhaphan larvae (Diptera). J Nat Hist 49:2139–2211

    Article  Google Scholar 

  • Rotheray GE, Robertson D (1998) Breeding habits and early stages of seven saproxylic acalypterates (Diptera). Dipt Digest 5:96–107

    Google Scholar 

  • Rotheray GE, Zumbado M, Hancock EG, Thompson FC (2000) Remarkable aquatic predators in the genus Ocyptamus (Diptera, Syrphidae). Stud Dipterol 7:385–398

    Google Scholar 

  • Rotheray GE, Hancock EG, Marcos-Garcia M (2007) Neotropical Copestylum (Diptera, Syrphidae) breeding in bromeliads (Bromeliaceae) including 22 new species. Zool J Linnean Soc 150:267–317

    Article  Google Scholar 

  • Rotheray GE, Marcos-Garcia M, Hancock G, Pérez-Bañón C, Maier CT (2009) Neotropical Copestylum (Diptera, Syrphidae) breeding in Agavaceae and Cactaceae including seven new species. Zool J Linnean Soc 156:697–749

    Article  Google Scholar 

  • Rotheray GE, Bland KP, Hancock G (2014) Paranthomyza nitida (Diptera: Anthomyzidae): life history in Scotland. Entomol Mon Mag 150:7–18

    Google Scholar 

  • Rotheray GE, Horsfield D, Ayre K, Hancock EG (2015) The early stages and development sites of four species of Heleomyzidae (Diptera). Dipt Digest 22:111–122

    Google Scholar 

  • Rotheray EL, Goulson D, Bussiére LF (2016) Growth, development, and life-history strategies in an unpredictable environment: case study of a rare hoverfly Blera fallax (Diptera, Syrphidae). Ecol Entomol 41:85–95

    Article  Google Scholar 

  • Roy DN (1937) On the function of the pharyngeal ridges in the larva of Calliphora erythrocephala. Parasitol (Cam) 29:143–149

    Article  Google Scholar 

  • Rupp L (1989) Die mitteleuropäische Arten der Gattung Volucella (Diptera, Syrphidae) als Kommensalen und Parasitoide in den Nestern von Hummeln und sozialen Wespen: Untersuchungen zur Wirts-findung, Larvalbiologie und Mimikry. Unpublished PhD Thesis, Albert Ludwigs Universität, Freiburg, Germany

    Google Scholar 

  • Santana FJ (1961) The biology of immature Diptera associated with bacterial decay in the giant sagaro cactus (Cereus giganteus Englemann). MS Thesis, University of Arizona

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schneider F (1950) Die Abwehrreaktion des Insektenblutes und ihre Beeinflussung durch die Parasiten. Vierteljahrsschr Naturforsch Ges Zürich 95:22–44

    Google Scholar 

  • Schroeder H, Klotzbach H, Elias S, Augustin C, Pueschel K (2003) Use of PCR-RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Sci Int 132:76–81

    Article  CAS  PubMed  Google Scholar 

  • Semelbauer M, Kozánek M (2012) Morphology of preimaginal stages of Lauxania and Calliopum (Diptera: lauxaniidae). Zootaxa 3346:1–28

    Article  Google Scholar 

  • Sewell D, Burnet B, Connolly K (1975) Genetic analysis of larval feeding behavior in Drosophila melanogaster. Genet Res 24:163–173

    Article  Google Scholar 

  • Sherman RA, Hall MJR, Thomas S (2000) Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol 45:55–81

    Article  CAS  PubMed  Google Scholar 

  • Skidmore P (1962) Notes on the Helomyzidae of Lancashire and Cheshire, including records from other parts of north-west England. Entomologiste 95(193–198):226–236

    Google Scholar 

  • Skidmore P (1985) The biology of the Muscidae of the world. Junk, Dordrecht

    Google Scholar 

  • Smith KGV (1956) On the Diptera associated with the stinkhorn (Phallus impudicus Pers.) with notes on other insects and invertebrates found on the fungus. Proc R Ent Soc Lond A 31:49–55

    Google Scholar 

  • Smith KVG (1989) An introduction to the immature stages of British flies. Handbks Ident Br Insects 10:1–280

    CAS  Google Scholar 

  • Sokolowski MB (1980) Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav Genet 10:291–302

    Article  CAS  PubMed  Google Scholar 

  • Sokolowski MB (1982) Drosophila larval foraging behaviour: digging. Anim Behav 30:1252–1261

    Article  Google Scholar 

  • Sokolowski MB (2001) Drosophila: genetics meets behaviour. Nat Rev 2:879–892

    Article  CAS  Google Scholar 

  • Speight MCD (1989) Saproxylic invertebrates and their conservation. Nature Environ Sers. No 42. Council of Europe, Strasbourg

    Google Scholar 

  • Ståhls G, Hippa H, Rotheray G, Muona J, Gilbert F (2003) Phylogeny of Syrphidae (Diptera) inferred from combined analysis of molecular and morphological characters. Syst Entomol 28:433–450

    Article  Google Scholar 

  • Starmer WT (1981) A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities. Evolution 35:38–52

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  CAS  PubMed  Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190

    Article  Google Scholar 

  • Sullivan RL, Sokal RR (1963) The effects of larval density on several strains of the house fly. Ecology 44:120–130

    Article  Google Scholar 

  • Teskey HJ (1976) Diptera larvae associated with trees in North America. Mem Entomol Soc Can 108:1–53

    Article  Google Scholar 

  • Teskey HJ (1981) Morphology and terminology – larvae. In: McAlpine J, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual Nearctic Diptera, vol 1, pp 65–88

    Google Scholar 

  • Thorpe WH (1930) The biology of the petroleum fly, Psilopa petrolii Coq. Trans R Entomol Soc Lond 78:331–343

    Article  Google Scholar 

  • Tinkeu LN, Hance T (1998) Functional morphology of the mandibles of the larvae of Episyrphus balteatus (De Geer, 1776) (Diptera: Syrphidae). Int J Insect Morphol Embryol 27:135–142

    Article  Google Scholar 

  • Tzanakakis ME, Prophetou DA, Vassiliou GN, Papadopoulos JJ (1983) Inhibition on larval growth of Dacus oleae by topical application of streptomycin to olives. Entomol Hellen 1:65–70

    Article  Google Scholar 

  • Varley GC (1947) The natural control of population balance in the knapweed gall-fly (Urophora jaceana). J Anim Ecol 16:139–187

    Article  Google Scholar 

  • Wahl E (1914) Über die Kopfbildung cyclorrhaphen Dipterenlarven und die postembryonale Entwicklung des Fliegenkopfes. Arb Zool Inst Univ Wien 20:159–272

    Google Scholar 

  • Wiegmann BM, Trautwein MD, Winkler IS, Barra NB, Kima J-W, Lambkin C, Berton MA, Cassela BK, Bayless KM, Heimberg AM, Wheeler BM, Petersone KJ, Pape T, Sinclair BJ, Skevington JH, Blagoderov V, Caravask J, Narayanan Kutty SN, Schmidt-Ott U, Kampmeier GE, Thompson FC, Grimaldi DA, Beckenbach AT, Courtney GM, Friedrich M, Meier R, Yeates DK (2011) Episodic radiations in the fly tree of life. Proc Natl Acad Sci 108:5690–5695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  Google Scholar 

  • Wilkinson JJ (1901) Pharynx of Eristalis tenax. R Clay, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rotheray, G.E. (2019). Saprophagy, Developing on Decay. In: Ecomorphology of Cyclorrhaphan Larvae (Diptera). Zoological Monographs, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-92546-2_6

Download citation

Publish with us

Policies and ethics