Skip to main content

Cooperative and Cognitive Hybrid Satellite-Terrestrial Networks

  • Chapter
  • First Online:
Cognitive Radio, Mobile Communications and Wireless Networks

Abstract

The development of next-generation wireless networks envisages the seamless integration between satellite systems and terrestrial cellular networks. The spectral resources allocated to satellite are not fully utilized, whereas terrestrial spectral resources are becoming overutilized day by day. Therefore, it is important to ascertain an efficient way to share the resources of space-based networks with the terrestrial networks. In view of different capabilities and services, the geostationary earth orbit (GEO) satellite could be the component of the space segment, while the terrestrial segment may be a 3G/4G heterogeneous network. With growing requirements of broadband services and limited availability of spectral resources, higher frequency bands (above 10 GHz), viz., Ku and Ka, may also need to be assigned for mobile satellite services. As such, it is quite challenging to transmit over such higher frequencies due to severe effects of atmospheric turbulence and scattering. Hence, it is imperative to explore cognitive spectrum sharing techniques to enhance spectrum utilization efficiency through the development of hybrid satellite-terrestrial communication systems. In this regard, this chapter studies the satellite-terrestrial communications with the emerging cooperative and cognitive radio techniques to promote the information and communication technology (ICT) sector in a more efficient and reliable manner. More specifically, the chapter addresses the hybrid satellite-terrestrial system design, planning, and resource allocation problems while exploiting cooperation among available network resources with hierarchical spectrum sharing to cope with the demands of futuristic wireless network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vanelli-Coralli A et al (2007) Satellite communications: research trends and open issues. Paper presented at proceedings international workshop on satellite and space communications, University of Salzburg, Salzburg, Austria, 13–14 September 2007

    Google Scholar 

  2. Evans B et al (2005) Integration of satellite and terrestrial systems in future media communications. IEEE Trans Wirel Commun 12(5):72–80. https://doi.org/10.1109/MWC.2005.1522108

    Article  Google Scholar 

  3. Laneman JN et al (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080. https://doi.org/10.1109/TIT.2004.838089

    Article  MathSciNet  MATH  Google Scholar 

  4. Bletsas A et al (2006) A simple cooperative diversity method based on network path selection. IEEE J Sel Areas Commun 24(3):659–672. https://doi.org/10.1109/JSAC.2005.862417

    Article  MathSciNet  Google Scholar 

  5. Krikidis I et al (2008) Amplify and-forward with partial relay selection. IEEE Commun Lett 12(4):235–237. https://doi.org/10.1109/LCOMM.2008.071987

    Article  Google Scholar 

  6. Yang Y et al (2009) Relay technologies for WiMax and LTE-advanced mobile systems. IEEE Commun Mag 47(10):100–105. https://doi.org/10.1109/MCOM.2009.5273815

    Article  Google Scholar 

  7. Paillassa B et al (2011) Improving satellite services with cooperative communications. Int J Satell Commun Netw 29(6):479–500. https://doi.org/10.1002/sat.989

    Article  Google Scholar 

  8. Chini P et al (2009) A survey on mobile satellite systems. Int J Satell Commun Netw 28(1):29–57. https://doi.org/10.1002/sat.941

    Article  Google Scholar 

  9. Sakarellos V et al (2014) Cooperative hybrid land mobile satellite–terrestrial broadcasting systems: outage probability evaluation and accurate simulation. Wirel Pers Commun 79(2):1471–1481. https://doi.org/10.1007/s11277-014-1941-6

    Article  Google Scholar 

  10. Digital Video Broadcasting (DVB) (2007) Framing structure, channel coding and modulation for satellite transmission to handheld (DVB-SH) document ETSI EN 302583 V1.2.1

    Google Scholar 

  11. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220. https://doi.org/10.1109/JSAC.2004.839380

    Article  Google Scholar 

  12. Huang K et al (2009) Spectrum sharing between cellular and mobile ad hoc networks: transmission-capacity trade-off. IEEE J Sel Areas Commun 27(7):1256–1267. https://doi.org/10.1109/JSAC.2009.090921

    Article  Google Scholar 

  13. Akyildiz IF et al (2006) Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Comput Netw 50(13):2127–2159. https://doi.org/10.1016/j.comnet.2006.05.001

    Article  MATH  Google Scholar 

  14. Akyildiz IF et al (2008) A survey on spectrum management in cognitive radio networks. IEEE Commun Mag 46(4). https://doi.org/10.1109/MCOM.2008.4481339

  15. Ozger M, Akan OB (2016) On the utilization of spectrum opportunity in cognitive radio networks. IEEE Commun Lett 20(1):157–160. https://doi.org/10.1109/LCOMM.2015.2504103

    Article  Google Scholar 

  16. Bukhari SHR et al (2016a) NS-2 based simulation Framework for cognitive radio sensor networks. http://eprints.whiterose.ac.uk/108661

  17. Bukhari SHR et al (2016b) A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks. IEEE Commun Surv Tutorials 18(2):924–948. https://doi.org/10.1109/COMST.2015.2504408

    Article  Google Scholar 

  18. Zou Y, Zhu J et al (2010) An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks. IEEE Trans Signal Process 58(10):5438–5445. https://doi.org/10.1109/TSP.2010.2053708

    Article  MathSciNet  MATH  Google Scholar 

  19. Suraweera HA et al (2010) Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Trans Veh Technol 59(4):1811–1822. https://doi.org/10.1109/TVT.2010.2043454

    Article  Google Scholar 

  20. Zhong C et al (2011) Outage analysis of decode and-forward cognitive dual-hop systems with the interference constraint in Nakagami-m fading channels. IEEE Trans Veh Technol 60(6):2875–2879. https://doi.org/10.1109/TVT.2011.2159256

    Article  Google Scholar 

  21. Ding H et al (2011) Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum sharing scenario. IEEE Trans Veh Technol 60(2):457–472. https://doi.org/10.1109/TVT.2010.2100053

    Article  Google Scholar 

  22. Sagong S et al (2011) Capacity of reactive DF scheme in cognitive relay networks. IEEE Trans Wirel Commun 10(10):3133–3138. https://doi.org/10.1109/TWC.2011.081011.101849

    Article  Google Scholar 

  23. Lee J et al (2011) Outage probability of cognitive relay networks with interference constraints. IEEE Trans Wirel Commun 10(2):390–395. https://doi.org/10.1109/TWC.2010.120310.090852

    Article  Google Scholar 

  24. da Costa DB et al. (2012) Dual-hop cooperative spectrum sharing systems with multi-primary users and multi-secondary destinations over Nakagami-m fading. Paper presented at proceedings IEEE international symposium on personal, indoor and mobile radio communications, Sydney, NSW, Australia, 9–12 September 2012

    Google Scholar 

  25. Duong TQ et al (2012) Cognitive relay networks with multiple primary transceivers under spectrum sharing. IEEE Signal Process Lett 19(11):741–744. https://doi.org/10.1109/LSP.2012.2217327

    Article  Google Scholar 

  26. Shin E-H, Kim D (2011) Time and power allocation for collaborative primary–secondary transmission using superposition coding. IEEE Commun Lett 15(2):196–198. https://doi.org/10.1109/LCOMM.2011.122810.101486

    Article  Google Scholar 

  27. Han Y et al (2009) Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Trans Wirel Commun 8(10):4945–4950. https://doi.org/10.1109/TWC.2009.081484

    Article  Google Scholar 

  28. Manna R et al (2011) Cooperative spectrum sharing in cognitive radio networks with multiple antennas. IEEE Trans Signal Process 59(11):5509–5522. https://doi.org/10.1109/TSP.2011.2163068

    Article  MathSciNet  MATH  Google Scholar 

  29. Bhatnagar MR, Arti MK (2013) Performance analysis of AF based hybrid satellite-terrestrial cooperative network over generalized fading channels. IEEE Commun Lett 17(10):1912–1915. https://doi.org/10.1109/LCOMM.2013.090313.131079

    Article  Google Scholar 

  30. Sreng S, Escrig B, Boucheret ML (2013) Exact outage probability of a hybrid satellite terrestrial cooperative system with best relay selection. Paper presented at proceedings IEEE international conference on communications, Budapest, Hungary, 9–13 June 2013

    Google Scholar 

  31. An K et al (2014) Symbol error analysis of hybrid satellite-terrestrial cooperative networks with cochannel interference. IEEE Commun Lett 18(11):1947–1950. https://doi.org/10.1109/LCOMM.2014.2361517

    Article  Google Scholar 

  32. Hemachandra KT, Beaulieu NC (2013) Outage analysis of opportunistic scheduling in dual-hop multiuser relay networks in the presence of interference. IEEE Trans Commun 61(5):1786–1796. https://doi.org/10.1109/TCOMM.2013.031213.120686

    Article  Google Scholar 

  33. Erwu L et al (2007) Performance evaluation of bandwidth allocation in 802.16j mobile multi-hop relay networks. In: Paper presented at proceedings IEEE vehicular technology conference-Spring, Dublin, Ireland, 22–25 April 2007

    Google Scholar 

  34. An K et al (2015) On the performance of multiuser hybrid satellite-terrestrial relay networks with opportunistic scheduling. IEEE Commun Lett 19(10):1722–1725. https://doi.org/10.1109/LCOMM.2015.2466535

    Article  Google Scholar 

  35. Upadhyay PK, Sharma PK (2016) Max-max user-relay selection scheme in multiuser and multirelay hybrid satellite terrestrial relay systems. IEEE Commun Lett 20(2):268–271. https://doi.org/10.1109/LCOMM.2015.2502599

    Article  Google Scholar 

  36. An K et al (2015) Performance analysis of multi-antenna hybrid satellite-terrestrial relay networks in the presence of interference. IEEE Trans Commun 63(11):4390–4404. https://doi.org/10.1109/TCOMM.2015.2474865

    Article  Google Scholar 

  37. Kandeepan S et al (2010) Cognitive satellite terrestrial radios. In: Paper presented at proceedings IEEE global telecommunication conference, Miami, FL, USA, 6–10 December 2010

    Google Scholar 

  38. Sharma SK et al (2013) Cognitive radio techniques for satellite communication systems. Paper presented at proceedings IEEE vehicular technology conference-Fall, Las Vegas, NV, USA, 2–5 September 2013

    Google Scholar 

  39. Jia M et al (2016) Broadband hybrid satellite-terrestrial communication systems based on cognitive radio toward 5G. IEEE Wirel Commun 23(6):96–106. https://doi.org/10.1109/MWC.2016.1500108WC

    Article  Google Scholar 

  40. Chu TMC, Zepernick H-J (2018) Optimal power allocation for hybrid cognitive cooperative radio networks with imperfect spectrum sensing. IEEE Access PP 99:1–1. https://doi.org/10.1109/ACCESS.2018.2792063

    Article  Google Scholar 

  41. Vassaki S et al (2013) Power allocation in cognitive satellite terrestrial networks with QoS constraints. IEEE Commun Lett 17(7):1344–1347. https://doi.org/10.1109/LCOMM.2013.051313.122923

    Article  Google Scholar 

  42. Lagunas E et al (2015) Resource allocation for cognitive satellite communications with incumbent terrestrial networks. IEEE Trans Cogn Commun Netw 1(3):305–317. https://doi.org/10.1109/TCCN.2015.2503286

    Article  Google Scholar 

  43. An K et al (2016) Outage performance of cognitive hybrid satellite–terrestrial networks with interference constraint. IEEE Trans Veh Technol 65(11):9397–9404. https://doi.org/10.1109/TVT.2016.2519893

    Article  Google Scholar 

  44. Shi S et al (2017) Optimal power control for real-time applications in cognitive satellite terrestrial networks. IEEE Commun Lett 21(8):1815–1818. https://doi.org/10.1109/LCOMM.2017.2684798

    Article  Google Scholar 

  45. Suffritti R et al (2011) Cognitive hybrid satellite-terrestrial systems. Paper presented at proceedings international conference on cognitive radio and advanced spectrum management, Barcelona, Spain, 26–29 October 2011

    Google Scholar 

  46. Liolis K et al (2013) Cognitive radio scenarios for satellite communications: the CoRaSat approach. Paper presented at proceedings future network and mobile summit, Lisboa, Portugal, 3–5 July 2013

    Google Scholar 

  47. Kim KJ, Tsiftsis TA (2010) Performance analysis of cyclically prefixed single-carrier transmissions with outdated opportunistic user selection. IEEE Signal Process Lett 17(10):847–850. https://doi.org/10.1109/LSP.2010.2060330

    Article  Google Scholar 

  48. Gradshteyn IS, Ryzhik IM (2000) Tables of integrals, series and products, 6th edn. Academic Press, New York

    MATH  Google Scholar 

  49. Simon MK, Alouini MS (2000) Digital communications over fading channels: a unified approach to performance analysis. Wiley, New York

    Book  Google Scholar 

  50. Tang J, Zhang X (2006) Transmit selection diversity with maximal- ratio combining for multicarrier DS-CDMA wireless networks over Nakagami-m fading channels. IEEE J Sel Areas Commun 24(1):104–112. https://doi.org/10.1109/JSAC.2005.858884

    Article  MathSciNet  Google Scholar 

  51. Miridakis NI et al (2015) Dual-hop communication over a satellite relay and shadowed Rician channels. IEEE Trans Veh Technol 64(9):4031–4040. https://doi.org/10.1109/TVT.2014.2361832

    Article  Google Scholar 

  52. Sharma PK et al (2017) Hybrid satellite-terrestrial spectrum sharing system with opportunistic secondary network selection. Paper presented at proceedings IEEE international conference on communications, Paris, France, 21–25 May 2017

    Google Scholar 

  53. Sharma PK et al (2017) Performance analysis of overlay spectrum sharing in hybrid satellite-terrestrial system with secondary network selection. IEEE Trans Wirel Commun 16(10):6586–6601. https://doi.org/10.1109/TWC.2017.2725950

    Article  Google Scholar 

  54. Zhang C et al (2015) A unified approach for calculating the outage performance of two-way AF relaying over fading channels. IEEE Trans Veh Technol 64(3):1218–1229. https://doi.org/10.1109/TVT.2014.2329853

    Article  Google Scholar 

  55. Suraweera HA et al (2009) Two hop amplify-and-forward transmission in mixed Rayleigh and Rician fading channels. IEEE Commun Lett 13(4):227–229. https://doi.org/10.1109/LCOMM.2009.081943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhum Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V., Upadhyay, P.K., Lee, KJ., da Costa, D.B. (2019). Cooperative and Cognitive Hybrid Satellite-Terrestrial Networks. In: Rehmani, M., Dhaou, R. (eds) Cognitive Radio, Mobile Communications and Wireless Networks. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-91002-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91002-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91001-7

  • Online ISBN: 978-3-319-91002-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics