Skip to main content

Adenosine Signalling in the Injured Heart

  • Chapter
  • First Online:

Part of the book series: The Receptors ((REC,volume 34))

Abstract

Adenosine plays a prominent role in the cardiovascular system and has been extensively studied for both its therapeutic and diagnostic abilities. This chapter reviews the various sources and metabolic pathways of adenosine formation in the heart. Depending on the individual cell type involved (cardiomyocyte, vascular smooth muscle cell, coronary endothelium, pericyte, fibroblast and cells of cardiac impulse generation and propagation) together with the cell-specific expression pattern of the four adenosine receptors, adenosine importantly regulates key parameters of cardiac function and energy supply including contractility, heart rate, coronary flow and substrate utilization. In the infarcted heart, recent evidence indicates that adenosine formed by CD73 on T cells and epicardial mesenchymal cells critically modulates central processes of cardiac inflammation, post-MI remodelling/fibrosis, regeneration and tissue protection. Since the A2BR appears to be linked to IL6 formation, the adenosine-IL6 axis may be a promising target for the therapy of post-MI inflammation, remodelling and fibrosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adair TH (2005) Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol 289:R283–R296

    Article  PubMed  CAS  Google Scholar 

  • Adriouch S, Haag F, Boyer O et al (2012) Extracellular NAD+: a danger signal hindering regulatory T cells. Microbes Infect 14:1284–1292

    Article  PubMed  CAS  Google Scholar 

  • Aherne CM, Kewley EM, Eltzschig HK (2011) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta BBA Biomembr 1808:1329–1339

    Article  CAS  Google Scholar 

  • Aherne CM, Collins CB, Masterson JC et al (2012) Neuronal guidance molecule netrin-1 attenuates inflammatory cell trafficking during acute experimental colitis. Gut 61:695–705

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A, Ahmad S, Glover L et al (2009) Adenosine A2A receptor is a unique angiogenic target of HIF-2α in pulmonary endothelial cells. Proc Natl Acad Sci 106:10684–10689

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonioli L, Pacher P, Vizi ES et al (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19:355–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bardenheuer H, Schrader J (1986) Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Phys 250:H173–H180

    CAS  Google Scholar 

  • Barletta KE, Ley K, Mehrad B (2012) Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol 32:856–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beavis PA, Stagg J, Darcy PK et al (2012) CD73: a potent suppressor of antitumor immune responses. Trends Immunol 33:231–237

    Article  PubMed  CAS  Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol Leg Content 204:317–322

    Article  CAS  Google Scholar 

  • Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813

    Article  PubMed  CAS  Google Scholar 

  • Bönner F, Borg N, Burghoff S et al (2012) Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS One 7:e34730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bönner F, Borg N, Jacoby C et al (2013) Ecto-5′-nucleotidase on immune cells protects from adverse cardiac remodeling. Circ Res 113:301–312

    Article  PubMed  CAS  Google Scholar 

  • Borg N, Alter C, Görldt N et al (2017) CD73 on T cells orchestrates cardiac wound healing after myocardial infarction by purinergic metabolic reprogramming. Circulation 136:297–313

    Article  PubMed  CAS  Google Scholar 

  • Boros D, Thompson J, Larson DF (2016) Adenosine regulation of the immune response initiated by ischemia reperfusion injury. Perfusion 31:103–110

    Article  PubMed  CAS  Google Scholar 

  • Borsellino G, Kleinewietfeld M, Mitri DD et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232

    Article  PubMed  CAS  Google Scholar 

  • Bowser JL, Lee JW, Yuan X et al (2017) The hypoxia-adenosine link during inflammation. J Appl Physiol 123:1303–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circ Res 120:207–228

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Pelleg A (2015) Cardiac purinergic signalling in health and disease. Purinergic Signal 11:1–46

    Article  PubMed  CAS  Google Scholar 

  • Carmona R, Guadix JA, Cano E et al (2010) The embryonic epicardium: an essential element of cardiac development. J Cell Mol Med 14:2066–2072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cekic C, Sag D, Day Y-J et al (2013) Extracellular adenosine regulates naive T cell development and peripheral maintenance. J Exp Med 210:2693–2706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chalmin F, Mignot G, Bruchard M et al (2012) Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 36:362–373

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekera PC, McIntosh VJ, Cao FX et al (2010) Differential effects of adenosine A2a and A2b receptors on cardiac contractility. Am J Physiol Heart Circ Physiol 299:H2082–H2089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Frangogiannis NG (2013) Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta BBA Mol Cell Res 1833:945–953

    Article  CAS  Google Scholar 

  • Chen Y, Epperson S, Makhsudova L et al (2004) Functional effects of enhancing or silencing adenosine A2b receptors in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 287:H2478–H2486

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Corriden R, Inoue Y et al (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 12:265–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chistiakov DA, Orekhov AN, Bobryshev YV (2016) The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp Mol Pathol 101:231–240

    Article  PubMed  CAS  Google Scholar 

  • Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103:203–215

    Article  PubMed  CAS  Google Scholar 

  • Cronstein BN, Daguma L, Nichols D et al (1990) The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest 85:1150–1157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csóka B, Selmeczy Z, Koscsó B et al (2011) Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 26:376–386

    Article  PubMed  CAS  Google Scholar 

  • Deaglio S, Dwyer KM, Gao W et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Decking UK, Schlieper G, Kroll K et al (1997) Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res 81:154–164

    Article  PubMed  CAS  Google Scholar 

  • Desai DM, Newton ME, Kadlecek T et al (1990) Stimulation of the phosphatidyl-inositol pathway can induce T-cell activation. Nature 348:348066a0

    Article  Google Scholar 

  • Deussen A, Borst M, Kroll K et al (1988a) Formation of S-adenosylhomocysteine in the heart. II: a sensitive index for regional myocardial underperfusion. Circ Res 63:250–261

    Article  PubMed  CAS  Google Scholar 

  • Deussen A, Borst M, Schrader J (1988b) Formation of S-adenosylhomocysteine in the heart. I: an index of free intracellular adenosine. Circ Res 63:240–249

    Article  PubMed  CAS  Google Scholar 

  • Deussen A, Henrich M, Hamacher K et al (1992) Noninvasive assessment of regional cardiac adenosine using positron emission tomography. J Nucl Med 33:2138–2144

    PubMed  CAS  Google Scholar 

  • Deussen A, Ohanyan V, Jannasch A et al (2012) Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol 52:794–801

    Article  PubMed  CAS  Google Scholar 

  • Dhalla AK, Shryock JC, Shreeniwas R et al (2003) Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr Top Med Chem 3:369–385

    Article  PubMed  CAS  Google Scholar 

  • Dhalla AK, Wong MY, Voshol PJ et al (2007) A1 adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents. Am J Physiol Endocrinol Metab 292:E1358–E1363

    Article  PubMed  CAS  Google Scholar 

  • Dobson JG, Shea LG, Fenton RA (2003) Beta-adrenergic and antiadrenergic modulation of cardiac adenylyl cyclase is influenced by phosphorylation. Am J Physiol Heart Circ Physiol 285:H1471–H1478

    Article  PubMed  CAS  Google Scholar 

  • Doppler SA, Carvalho C, Lahm H et al (2017) Cardiac fibroblasts: more than mechanical support. J Thorac Dis 9:S36–S51

    Article  PubMed  PubMed Central  Google Scholar 

  • Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubey RK, Gillespie DG, Mi Z et al (1997) Exogenous and endogenous adenosine inhibits fetal calf serum–induced growth of rat cardiac fibroblasts: role of A2B receptors. Circulation 96:2656–2666

    Article  PubMed  CAS  Google Scholar 

  • Dubey RK, Gillespie DG, Jackson EK (1998) Adenosine inhibits collagen and protein synthesis in cardiac fibroblasts: role of A2B receptors. Hypertension 31:943–948

    Article  PubMed  CAS  Google Scholar 

  • Dubey RK, Gillespie DG, Zacharia LC et al (2001) A2B receptors mediate the antimitogenic effects of adenosine in cardiac fibroblasts. Hypertension 37:716–721

    Article  PubMed  CAS  Google Scholar 

  • Eckle T, Krahn T, Grenz A et al (2007) Cardioprotection by Ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115:1581–1590

    Article  PubMed  CAS  Google Scholar 

  • El-Tayeb A, Iqbal J, Behrenswerth A et al (2009) Nucleoside-5′-monophosphates as prodrugs of adenosine A2A receptor agonists activated by ecto-5′-nucleotidase. J Med Chem 52:7669–7677

    Article  PubMed  CAS  Google Scholar 

  • Eltzschig HK, Abdulla P, Hoffman E et al (2005) HIF-1–dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202:1493–1505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eltzschig HK, Köhler D, Eckle T et al (2009) Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113:224–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eltzschig HK, Bonney SK, Eckle T (2013) Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends Mol Med 19:345–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Epperson SA, Brunton LL, Ramirez-Sanchez I et al (2009) Adenosine receptors and second messenger signaling pathways in rat cardiac fibroblasts. Am J Physiol Cell Physiol 296:C1171–C1177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan D, Takawale A, Lee J et al (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang HK, Sturgeon C, Segil LJ et al (1997) Cardiac contractile function during coronary stenosis in dogs: association of adenosine in glycolytic dependence. Am J Phys 272:H2195–H2203

    CAS  Google Scholar 

  • Fang M, Xiang F-L, Braitsch CM et al (2016) Epicardium-derived fibroblasts in heart development and disease. J Mol Cell Cardiol 91:23–27

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Song Y, Chen C et al (2010) Stimulation of adenosine A2B receptors induces interleukin-6 secretion in cardiac fibroblasts via the PKC-δ–P38 signalling pathway. Br J Pharmacol 159:1598–1607

    Article  PubMed  CAS  Google Scholar 

  • Flögel U, Burghoff S, van Lent PLEM et al (2012) Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med 4:146ra108

    Article  PubMed  CAS  Google Scholar 

  • Forrester T (1990) Release of ATP from heart. Ann N Y Acad Sci 603:335–351

    Article  PubMed  CAS  Google Scholar 

  • Geldenhuys WJ, Hanif A, Yun J et al (2017) Exploring adenosine receptor ligands: potential role in the treatment of cardiovascular diseases. Molecules 22:917

    Article  CAS  PubMed Central  Google Scholar 

  • Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nukleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 50:228–229

    Article  CAS  Google Scholar 

  • Gile J, Eckle T (2016) ADORA2b signaling in cardioprotection. J Nat Sci JNSCI 2:222

    Google Scholar 

  • Gödecke S, Roderigo C, Rose CR et al (2012) Thrombin-induced ATP release from human umbilical vein endothelial cells. Am J Physiol Cell Physiol 302:C915–C923

    Article  PubMed  CAS  Google Scholar 

  • Gorman MW, Rooke GA, Savage MV et al (2010) Adenine nucleotide control of coronary blood flow during exercise. Am J Physiol Heart Circ Physiol 299:H1981–H1989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haskó G, Linden J, Cronstein B et al (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hausenloy DJ, Yellon DM (2009) Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 204:334–341

    Article  PubMed  CAS  Google Scholar 

  • Headrick JP, Peart JN, Reichelt ME et al (2011) Adenosine and its receptors in the heart: regulation, retaliation and adaptation. Biochim Biophys Acta BBA Biomembr 1808:1413–1428

    Article  CAS  Google Scholar 

  • Headrick JP, Ashton KJ, Rose’Meyer RB et al (2013) Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther 140:92–111

    Article  PubMed  CAS  Google Scholar 

  • Hesse J, Leberling S, Boden E et al (2017) CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction. FASEB J 31:3040–3053

    Article  PubMed  CAS  Google Scholar 

  • Isakov N, Altman A (2013) Regulation of immune system cell functions by protein kinase C. Front Immunol 4:384

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson EK, Ren J, Gillespie DG (2011) 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors. Am J Physiol Heart Circ Physiol 301:H391–H401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jivraj N, Phinikaridou A, Shah AM et al (2014) Molecular imaging of myocardial infarction. Basic Res Cardiol 109:397

    Article  PubMed  CAS  Google Scholar 

  • Kinsey GR, Huang L, Jaworska K et al (2012) Autocrine adenosine signaling promotes regulatory T cell–mediated renal protection. J Am Soc Nephrol JASN 23:1528–1537

    Article  PubMed  CAS  Google Scholar 

  • Kloner RA, Hale SL, Dai W et al (2017) Cardioprotection: where to from here? Cardiovasc Drugs Ther 31:53–61

    Article  PubMed  CAS  Google Scholar 

  • Koeppen M, Harter PN, Bonney S et al (2012) Adora2b signaling on bone marrow derived cells dampens myocardial ischemia-reperfusion injury. Anesthesiol J Am Soc Anesthesiol 116:1245–1257

    CAS  Google Scholar 

  • Kong T, Westerman KA, Faigle M et al (2006) HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J 20:2242–2250

    Article  PubMed  CAS  Google Scholar 

  • Köröskényi K, Joós G, Szondy Z (2017) Adenosine in the Thymus. Front Pharmacol 8:932

    Article  PubMed  PubMed Central  Google Scholar 

  • Layland J, Carrick D, Lee M et al (2014) Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv 7:581–591

    Article  PubMed  Google Scholar 

  • Lépine S, Le HS, Lakatos B et al (2006) ATP-induced apoptosis of thymocytes is mediated by activation of P2X7 receptor and involves de novo ceramide synthesis and mitochondria. Biochim Biophys Acta 1761:73–82

    Google Scholar 

  • Linden J, Cekic C (2012) Regulation of lymphocyte function by adenosine. Arterioscler Thromb Vasc Biol 32:2097–2103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Y, Iyer RP, Jung M et al (2017) Cardiac fibroblast activation post-myocardial infarction: current knowledge gaps. Trends Pharmacol Sci 38:448–458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahaffey KW, Puma JA, Barbagelata NA et al (1999) Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) Trial. J Am Coll Cardiol 34:1711–1720

    Article  PubMed  CAS  Google Scholar 

  • Martin BJ, McClanahan TB, Wylen DGLV et al (1997) Effects of ischemia, preconditioning, and adenosine deaminase inhibition on interstitial adenosine levels and infarct size. Basic Res Cardiol 92:240–251

    Article  PubMed  CAS  Google Scholar 

  • Mathes D, Weirather J, Nordbeck P et al (2016) CD4+ Foxp3+ T-cells contribute to myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 101:99–105

    Article  PubMed  CAS  Google Scholar 

  • Matsuura K, Honda A, Nagai T et al (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 119:2204–2217

    PubMed  PubMed Central  CAS  Google Scholar 

  • McColl SR, St-Onge M, Dussault AA et al (2006) Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils. FASEB J 20:187–189

    Article  PubMed  CAS  Google Scholar 

  • McIntosh VJ, Lasley RD (2012) Adenosine receptor-mediated Cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 17:21–33

    Article  PubMed  CAS  Google Scholar 

  • Morote–Garcia JC, Rosenberger P, Nivillac NMI et al (2009) Hypoxia-inducible factor–dependent repression of equilibrative nucleoside transporter 2 attenuates mucosal inflammation during intestinal hypoxia. Gastroenterology 136:607–618

    Article  PubMed  CAS  Google Scholar 

  • Möser GH, Schrader J, Deussen A (1989) Turnover of adenosine in plasma of human and dog blood. Am J Phys 256:C799–C806

    Article  Google Scholar 

  • Mustafa SJ, Morrison RR, Teng B et al (2009) Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. Handb Exp Pharmacol 193:161–188

    Google Scholar 

  • Nikiforov A, Kulikova V, Ziegler M (2015) The human NAD metabolome: functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol 50:284–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishat S, Khan LA, Ansari ZM et al (2016) Adenosine A3 receptor: a promising therapeutic target in cardiovascular disease. Curr Cardiol Rev 12:18–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novitskaya T, Chepurko E, Covarrubias R et al (2016) Extracellular nucleotide regulation and signaling in cardiac fibrosis. J Mol Cell Cardiol 93:47–56

    Article  PubMed  CAS  Google Scholar 

  • Ohta A, Kini R, Ohta A et al (2012) The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 3:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsson RA (2003) Robert Berne: his place in the history of purine research. Drug Dev Res 58:296–301

    Article  CAS  Google Scholar 

  • Pak K, Zsuga J, Kepes Z et al (2015) The effect of adenosine deaminase inhibition on the A1 adenosinergic and M2 muscarinergic control of contractility in eu- and hyperthyroid guinea pig atria. Naunyn Schmiedeberg's Arch Pharmacol 388:853–868

    Article  CAS  Google Scholar 

  • Peart JN, Headrick JP (2007) Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 114:208–221

    Article  PubMed  CAS  Google Scholar 

  • Phosri S, Arieyawong A, Bunrukchai K et al (2017) Stimulation of adenosine A2B receptor inhibits endothelin-1-induced cardiac fibroblast proliferation and α-smooth muscle actin synthesis through the cAMP/Epac/PI3K/Akt-signaling pathway. Front Pharmacol 8:428

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinto AR, Ilinykh A, Ivey MJ et al (2016) Revisiting cardiac cellular composition novelty and significance. Circ Res 118:400–409

    Article  PubMed  CAS  Google Scholar 

  • Quast C, Alter C, Ding Z et al (2017) Adenosine formed by CD73 on T cells inhibits cardiac inflammation and fibrosis and preserves contractile function in transverse aortic constriction–induced heart failure. CLINICAL PERSPECTIVE. Circ Heart Fail 10:e003346

    Article  PubMed  CAS  Google Scholar 

  • Randhawa PK, Jaggi AS (2016) Unraveling the role of adenosine in remote ischemic preconditioning-induced cardioprotection. Life Sci 155:140–146

    Article  PubMed  CAS  Google Scholar 

  • Regateiro FS, Howie D, Nolan KF et al (2011) Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-β. Eur J Immunol 41:2955–2965

    Article  PubMed  CAS  Google Scholar 

  • Romio M, Reinbeck B, Bongardt S et al (2011) Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am J Physiol Cell Physiol 301:C530–C539

    Article  PubMed  CAS  Google Scholar 

  • Ross AM, Gibbons RJ, Stone GW et al (2005) A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 45:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Villalba A, Simón AM, Pogontke C et al (2015) Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J Am Coll Cardiol 65:2057–2066

    Article  PubMed  Google Scholar 

  • Ryzhov S, Solenkova NV, Goldstein AE et al (2008) Adenosine receptor–mediated adhesion of endothelial progenitors to cardiac microvascular endothelial cells. Circ Res 102:356–363

    Article  PubMed  CAS  Google Scholar 

  • Ryzhov S, Goldstein AE, Novitskiy SV et al (2012) Role of A2B adenosine receptors in regulation of paracrine functions of stem cell antigen 1-positive cardiac stromal cells. J Pharmacol Exp Ther 341:764–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryzhov S, Zhang Q, Biaggioni I et al (2013) Adenosine A2B receptors on cardiac stem cell antigen (Sca)-1–positive stromal cells play a protective role in myocardial infarction. Am J Pathol 183:665–672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schenk U, Frascoli M, Proietti M et al (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4:ra12–ra12

    Article  PubMed  Google Scholar 

  • Schrader J, Rubio R, Berne RM (1975) Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: a possible effect on Ca2+ influx. J Mol Cell Cardiol 7:427–433

    Article  PubMed  CAS  Google Scholar 

  • Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflugers Arch 372:29–35

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Koeppen M, Bonney S et al (2015) Differential tissue-specific function of the Adora2b in cardio-protection. J Immunol Baltim Md 1950 195:1732–1743

    CAS  Google Scholar 

  • Shaikh G, Cronstein B (2016) Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal 12:191–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen J, Halenda SP, Sturek M et al (2005) Novel mitogenic effect of adenosine on coronary artery smooth muscle cells: role for the A1 adenosine receptor. Circ Res 96:982–990

    Article  PubMed  CAS  Google Scholar 

  • Shinde AV, Frangogiannis NG (2017) Mechanisms of fibroblast activation in the remodeling myocardium. Curr Pathobiol Rep 5:145–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siwik DA, Chang DLF, Colucci WS (2000) Interleukin-1β and tumor necrosis factor-α decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86:1259–1265

    Article  PubMed  CAS  Google Scholar 

  • Smart N, Bollini S, Dubé KN et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474:640–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smits AM, Dronkers E, Goumans MJ (2018) The epicardium as a source of multipotent adult cardiac progenitor cells: their origin, role and fate. Pharmacol Res 127:129–140

    Article  PubMed  CAS  Google Scholar 

  • St. Hilaire C, Carroll SH, Chen H et al (2009) Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol 218:35–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stark G, Domanowits H, Sterz F et al (1994) Action of ATP on ventricular automaticity. J Cardiovasc Pharmacol 24:740–744

    Article  PubMed  CAS  Google Scholar 

  • Synnestvedt K, Furuta GT, Comerford KM et al (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110:993–1002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell Tissue Res 365:563–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tebbenjohanns J, Niehaus M, Korte T et al (1999) Noninvasive diagnosis in patients with undocumented tachycardias. J Cardiovasc Electrophysiol 10:916–923

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Piras BA, Kron IL et al (2015) Adenosine 2B receptor activation reduces myocardial reperfusion injury by promoting anti-inflammatory macrophages differentiation via PI3K/Akt pathway Oxid Med Cell Longev. https://www.hindawi.com/journals/omcl/2015/585297/. Accessed 13 Feb 2018

  • Toldo S, Zhong H, Mezzaroma E et al (2012) GS-6201, a selective blocker of the A2B adenosine receptor, attenuates cardiac remodeling after acute myocardial infarction in the mouse. J Pharmacol Exp Ther 343:587–595

    Article  PubMed  CAS  Google Scholar 

  • Townsend R, Desai A, Rammelsberg D et al (2017) Safety and tolerability of intravenous regadenoson in healthy subjects: a randomized, repeat-dose, placebo-controlled study. J Nucl Cardiol 24:57–65

    Article  PubMed  Google Scholar 

  • Turner NA, Das A, Warburton P et al (2009) Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am J Physiol Heart Circ Physiol 297:H1117–H1127

    Google Scholar 

  • Valente M, Nascimento DS, Cumano A et al (2014) Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells Dev 23:2263–2273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Hoeven D, Wan TC, Gizewski ET et al (2011) A role for the low-affinity A2B adenosine receptor in regulating superoxide generation by murine neutrophils. J Pharmacol Exp Ther 338:1004–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Wylen DG (1994) Effect of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia. Circulation 89:2283–2289

    Article  PubMed  Google Scholar 

  • Vang T, Torgersen KM, Sundvold V et al (2001) Activation of the Cooh-terminal Src kinase (Csk) by camp-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med 193:497–508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vecchio EA, Chuo CH, Baltos JA et al (2016) The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. Biochem Pharmacol 117:46–56

    Article  PubMed  CAS  Google Scholar 

  • Vecchio EA, White PJ, May LT (2017) Targeting adenosine receptors for the treatment of cardiac fibrosis. Front Pharmacol 8:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Villarreal F, Epperson SA, Ramirez-Sanchez I et al (2009) Regulation of cardiac fibroblast collagen synthesis by adenosine: roles for Epac and PI3K. Am J Physiol Cell Physiol 296:C1178–C1184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakeno M, Minamino T, Seguchi O et al (2006) Long-term stimulation of adenosine A2b receptors begun after myocardial infarction prevents cardiac remodeling in rats. Circulation 114:1923–1932

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Jacobsen SEW, Bengtsson A et al (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol 5:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Hu Q, Nakamura Y et al (2006) The role of the Sca-1+/CD31− cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24:1779–1788

    Article  PubMed  Google Scholar 

  • Wijk B, van Gunst QD, Moorman AFM et al (2012) Cardiac regeneration from activated epicardium. PLoS One 7:e44692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woehrle T, Yip L, Elkhal A et al (2010) Pannexin-1 hemichannel–mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116:3475–3484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia N, Jiao J, Tang T-T et al (2015) Activated regulatory T-cells attenuate myocardial ischaemia/reperfusion injury through a CD39-dependent mechanism. Clin Sci 128:679–693

    Article  CAS  Google Scholar 

  • Yang Z, Day Y-J, Toufektsian M-C et al (2006) Myocardial infarct–sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114:2056–2064

    Article  PubMed  CAS  Google Scholar 

  • Yegutkin GG (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 49:473–497

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhong H, Everett TH et al (2014) Blockade of A2B adenosine receptor reduces left ventricular dysfunction and ventricular arrhythmias 1 week after myocardial infarction in the rat model. Heart Rhythm 11:101–109

    Article  PubMed  Google Scholar 

  • Zhao ZQ, Sato H, Williams MW et al (1996) Adenosine A2-receptor activation inhibits neutrophil-mediated injury to coronary endothelium. Am J Physiol Heart Circ Physiol 271:H1456–H1464

    Article  CAS  Google Scholar 

  • Zhou B, Ma Q, Rajagopal S et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou B, Honor LB, He H et al (2011) Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest 121:1894–1904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schrader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hesse, J., Alter, C., Schrader, J. (2018). Adenosine Signalling in the Injured Heart. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_17

Download citation

Publish with us

Policies and ethics