Skip to main content

Advances in Bamboo Biotechnology: Present Status and Future Perspective

  • Chapter
  • First Online:
Book cover Biotechnologies of Crop Improvement, Volume 1

Abstract

Bamboo, the most important natural and renewable resource of the world, has always been an integral part of the social and economic life of many Asian countries. Therefore, the annual demands for bamboos have already outcrossed the annual yields across the world. Increasing population pressure; indiscriminate exploitation by paper, pulp and fuel industry; and insufficient attempts to replenish and cultivate bamboos are further widening the gap between demand and supply. This has forced scientists to pay greater attention towards employment of advanced biotechnological tools for understanding, generating and improving bamboos. As a result, new insights into bamboos were gained through genomics, proteomics, nanotechnology and transgenic technology. The findings show the way for better utilization of improved bamboos in meeting the future needs of the world. The achievements highlighted in the present review pave the way for the betterment of bamboos for the next millennium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri RK, Nandi SK (2009) In vitro shoot cut: a high frequency multiplication and rooting method in the bamboo Dendrocalamus hamiltonii. Biotechnology 8:259–263

    Article  Google Scholar 

  • Ahmad S, Khushnooda RA, Jagdalec P, Tulliani JM, Ferroa GA (2015) High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater Des 76:223–229

    Article  CAS  Google Scholar 

  • Ahmad N, Sharma S, Singh VN, Shasmi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011:1–8

    Article  CAS  Google Scholar 

  • Alexander MP, Rao TC (1968) In vitroculture of bamboo embryos. Curr Sci 37:415

    Google Scholar 

  • Al-Halafi AM (2014) Nanocarriers of nanotechnology in retinal diseases. Saudi J Ophthalmol 28(4):304–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali AH, Nirmala C, Badal T, Sharma ML (2009) In vitro organogenesis and simultaneous formation of shoots and roots from callus in Dendrocalamus asper. In: 8 World Bamboo Congress, Bangkok, 16–19 September. Proceedings, vol 6. World Bamboo Organization, Plymouth, pp 32–41

    Google Scholar 

  • Anand M, Brar J, Sood A (2013) In vitro propagation of an edible bamboo Bambusa bambos and assessment of clonal fidelity through molecular markers. J Med Bioeng 2(4):257–261

    Article  CAS  Google Scholar 

  • Ansari SA, Kumar S, Palaniswamy K (1996) Peroxidase activity in relation to in vitro rhizogenesis and precocious flowering in bamboos. Curr Sci 71:358–359

    Google Scholar 

  • Arshad SM, Kumar A, Bhatnagar SK (2005) Micropropagation of Bambusa wamin through proliferation of mature nodal explant. J Biol Res 3:59–66

    CAS  Google Scholar 

  • Arya S, Kaur B, Arya ID (2009) Micropropagation of economically important bamboo Dendrocalamus hamiltonii through axillary bus and seed culture. In: 8 World Bamboo Congress, Bangkok, 16–19 September. Proceedings, vol 6. World Bamboo Organization, Plymouth, pp 122–130

    Google Scholar 

  • Arya ID, Kaur B, Arya S (2012) Rapid and mass propagation of economically important bamboo Dendrocalamus hamiltonii. Indian J Energy 1:11–16

    Google Scholar 

  • Arya ID, Satsangi S, Arya S (2001) Rapid micropropagation of edible bamboo Dendrocalamus asper. J Sustain For 14:103–114

    Article  Google Scholar 

  • Arya S, Satsangi R, Arya ID (2002) Rapid mass multiplication of edible bamboo Dendrocalamus asper. J Sustain For 14:103–109

    Article  Google Scholar 

  • Arya S, Satsangi R, Arya ID (2008a) Direct regeneration of shoots from immature inflorescences in Dendrocalamus asper (edible bamboo) leading to mass propagation. J Am Bamboo Soc 21:14–20

    Google Scholar 

  • Arya S, Satsangi R, Arya ID (2008b) Large scale plant propagation of edible bamboo Dendrocalamus asper through somatic embryogenesis. J Am Bamboo Soc 21:21–31

    Google Scholar 

  • Bag N, Chandra S, Palni LMS, Nandi SK (2000) Micropropagation of Devringal [Thamnocalamus spathiflorus (Trin.) Munro]- a temperate bamboo, and comparison between in vitro propagated plants and seedlings. Plant Sci 156:125–135

    Article  PubMed  CAS  Google Scholar 

  • Bag N, Palni LMS, Chandra S, Nandi SK (2012) Somatic embryogenesis in ‘maggar’ bamboo (Dendrocalamus hamiltonii) and field performance of regenerated plants. Curr Sci 102(9):1279–1287

    Google Scholar 

  • Baldwin BS, Cirtain M, Horton DS, Ouellette J, Franklin SB, Preece JE (2009) Propagation methods for rivercane Arundinaria gigantea L. (Walter). Castanea 74(3):300–316

    Article  Google Scholar 

  • Banerjee M, Gantait S, Pramanik BR (2011) A two step method for accelerated mass propagation of Dendrocalamus asper and their evaluation in field. Physiol Mol Biol Plants 17(4):387–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baruwati B, Polshettiwar V, Varma RS (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11:926–930

    Article  CAS  Google Scholar 

  • Bejoy M, Anish NP, Radhika BJ, Nai GM (2012) In vitro propagation of Ochlandra wightii (Munro) Fisch: an endemic reed of Southern Western Ghats India. Biotechnology 11(2):67–73

    Article  CAS  Google Scholar 

  • Bhandawat A, Singh G, Seth R, Singh P, Sharma RK (2017) Genome-wide transcriptional profiling to elucidate key candidates involved in bud burst and rattling growth in a subtropical bamboo (Dendrocalamus hamiltonii). Front Plant Sci 7:2038

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya D, Sinha R, Hazra S, Datta R, Chattopadhyay S (2013) De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics 14:748

    Article  CAS  Google Scholar 

  • Bisht P, Pant M, Kant A (2010) In vitro propagation of Gigantochloa atroviolaceae Widjaja through nodal explants. J Am Sci 6:1019–1025

    Google Scholar 

  • Brar J, Anand M, Sood A (2013) In vitro seed germination of economically important edible bamboo Dendrocalamus membranaceus Munro. Indian J Exp Biol 51(1):88–96

    PubMed  CAS  Google Scholar 

  • Cao YW, Jin R, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123(32):7961–7962

    Article  PubMed  CAS  Google Scholar 

  • Chambers SM, Heuch JHR, Pirrie A (1991) Micropropagation and in vitro flowering of bamboo Dendrocalamus hamiltonii Munro. Plant Cell Tissue Organ Cult 27:45–48

    Article  CAS  Google Scholar 

  • Das M, Pal A (2005) In vitro regeneration of Bambusa balcooa Roxb: factors affecting changes of morphogenetic competence in the axillary buds. Plant Cell Tissue Organ Cult 81:109–112

    Article  CAS  Google Scholar 

  • Das S, Saha M (2012) Preparation of carbon Nanosphere from bamboo and its use in water purification. Curr Trends Tech Sci 2(1):2279–0535

    Google Scholar 

  • David F (1984) The book of bamboo: a comprehensive guide to this remarkable plant, its uses, and its history. Sierra Club Books, San Francisco

    Google Scholar 

  • Devi WS, Bengyella L, Sharma GJ (2012) In vitro seed germination and micropropagation of edible bamboo Dendrocalamus giganteus Munro using seeds. Biotechnology 11:74–80

    Article  CAS  Google Scholar 

  • Devi WS, Sharma GJ (2009) In vitro propagation of Arundinaria callosa Munroan edible bamboo from nodal explants of mature plants. Open Plant Sci J 3:35–39

    Article  CAS  Google Scholar 

  • Diab EEE, Mohamed SE (2008) In vitro morphogenesis and plant regeneration of bamboos (Oxytenanthera abyssinica a. Rich. Munro). Int J Sustain Crop Prod 3:72–79

    Google Scholar 

  • Douglas C, Halperin W, Gordon M, Nester E (1985) Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. J Bacteriol 161:764–766

    Google Scholar 

  • Erkoc S (2006) Structural and electronic properties of bamboo-like carbon nanostructure. Phys E 31:62–66

    Article  CAS  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang ZI, Xiang CI, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J, Zhang Y, Zhang C, Qi F, Li X, Mu S, Peng Z (2014) Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-Seq analysis. PLoS One 9(6):e98910

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillis K, Gielis J, Peeters H, Dhooghe E, Oprins J (2007) Somatic embryogenesis from mature Bambusa balcooa Roxburgh as basis for mass production of elite forestry bamboo. Plant Cell Tissue Organ Cult 91:115–123

    Article  Google Scholar 

  • Godbole S, Sood A, Thakur R, Sharma M, Ahuja PS (2002) Somatic embryogenesis and its conversion into plantlets in a multipurpose bamboo, Dendrocalamus hamiltonii Nees et Arn. Ex Munro. Curr Sci 83:885–889

    CAS  Google Scholar 

  • Graves AE, Goldman SL, Banks SW, Graves ACF (1988) Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp. and Triticum aestivum. J Bacteriol 170:2395–2400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gui YJ, Zhou Y, Wang Y, Wang S, Wang SY, Hu Y, Bo SP, Chen H, Zhou CP, Ma NX, Zhang TZ, Fan LJ (2010) Insights into the bamboo genome: syntenic relationships to Rice and Sorghum. J Integr Plant Biol 52(11):1008–1015

    Article  PubMed  CAS  Google Scholar 

  • He XQ, Suzuki K, Kitamura S, Lin JX, Cui KM, Itoh T (2002) Towards understanding the different function of two types of parenchyma cells in bamboo culms. Plant Cell Physiol 43:186–195

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Reddy AS (1997) Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol Biol 34:949–959

    Google Scholar 

  • Hu S, Zhou J, Cao Y, Lu X, Duan N, Ren P, Chen K (2011) In vitro callus induction and plant regeneration from mature seed embryo and young shoots in a giant sympodial bamboo, Dendrocalamus farinosus (Keng et Keng f.) Chia et H. L. Fung. Afr J Biotechnol 10:3210–3215

    Article  CAS  Google Scholar 

  • Islam N, Rahman MM (2005) Micro-cloning in commercially important six bamboo species for mass propagation and at a large scale cultivation. Plant Tissue Cult Biotech 15:103–111

    Google Scholar 

  • Jimenez VM, Castillo J, Tavares E, Guevara E, Montiel M (2006) In vitro propagation of the neotropical giant bamboo, Guadua angustifolia Kunth, through axillary shoot proliferation. Plant Cell Tissue Organ Cult 86:389–395

    Article  Google Scholar 

  • John CK, Nadgauda RS (1999) Review- In vitro-induced flowering in bamboos. In Vitro Cell Dev Biol Plant 35:309–315

    Article  CAS  Google Scholar 

  • Kahl G (1982) Molecular biology of wound healing: the conditioning phenomenon. In: Kahl G, Schell J (eds) Molecular biology of plant tumors. Academic Press, New York, pp 211–268

    Chapter  Google Scholar 

  • Kalia S, Kalia RK, Sharma SK (2004) In vitro regeneration of an indigenous bamboo (Bambusa nutans) from internode and leaf explant. J Bamboo Rattan 3:217–228

    Article  Google Scholar 

  • Kant A, Arya S, Arya ID (2009) Micropropagation protocol for Melocanna baccifera using nodal explants from mature clump. 8th World Bamboo Congress Proc 6:2–12

    Google Scholar 

  • Kapoor P, Rao IU (2006) In vitro rhizome induction and plantlet formation from multiple shoots in Bambusa bambos var gigantea Bennet and Gaur by using growth regulators and sucrose. Plant Cell Tissue Organ Cult 85:211–217

    Article  CAS  Google Scholar 

  • Kaufmann K, Busch W (2013) Plant genomics: from weed to wheat. Genome Biol 14:308

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur D, Dogra V, Thapa P, Bhattacharya A, Sood A, Sreenivasulu Y (2015) In vitroflowering associated protein changes in Dendrocalamus hamiltonii. Proteomics 15:1291–1306

    Article  PubMed  CAS  Google Scholar 

  • Kaur D, Ogra RK, Bhattacharya A, Sood A (2012) Changes in sugar levels during slow growth of Dendrocalamus hamiltonii somatic embryos due to liquid paraffin overlay. In Vitro Cell Dev Biol Plant 48:120–126

    Article  CAS  Google Scholar 

  • Kaur D, Thapa P, Sharma M, Bhattacharya A, Sood A (2014) In vitro flowering- a system for tracking floral organ development in Dendrocalamus hamiltonii Nees et Arn ex Munro. Indian J Exp Biol 52:825–834

    PubMed  Google Scholar 

  • Khan HR, Burla S, Siri N, Lavanya P (2014) Effect of nutrient media and phytohormones on in vitro establishment of Bambusa balcooa. Roxb Int Lett of Nat Sci 17:1–11

    Google Scholar 

  • Komatsu YH, Piotto KDB, Brondani GE, Gonçalves AN, Almeid M (2011) In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides. J For Res 22(2):209–215

    Article  CAS  Google Scholar 

  • Kulzer F, Orrit M (2004) Single-molecule optics. Annu Rev Phys Chem 55:585–611

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Chin T (1960) Comparative anatomical studies of some Chinese bamboos. Acta Bot Sin 9:76–95

    Google Scholar 

  • Li XB, Shupe TF, Peter GF, Hse CY, Eberhardt TL (2007) Chemical changes with maturation of the bamboo species Phyllostachys pubescens. J Trop For Sci 19:6

    Google Scholar 

  • Lin CS, Chen CT, Lin CC, Chang WC (2003) A method of inflorescence proliferation. Plant Cell Rep 21:838–843

    PubMed  CAS  Google Scholar 

  • Lin CS, Kalpana K, Chang WC, Lin NS (2007) Improving multiple shoot proliferation in bamboo mosaic virus-free Bambusa oldhamii Munro propagation by liquid culture. Hortic Sci 42:1243–1246

    CAS  Google Scholar 

  • Lin CS, Liang CJ, Hsaio HW, Lin MJ, Chang WC (2007) In vitro flowering of green and albino Dendrocalamus latiflorus. New For 34:177–186

    Article  Google Scholar 

  • Lin CS, Lin CC, Chang WC (2004) Effect of thidiazuron on vegetative tissue derived somatic embryogenesis and flowering of bamboo Bambusa edulis. Plant Cell Tissue Organ Cult 76:75–82

    Article  CAS  Google Scholar 

  • Lobovikov M, Paudel S, Piazza M, Ren H, Wu J (2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food and Agriculture Organization of the United Nations, Rome, pp 1–73

    Google Scholar 

  • Louis B, Waikhom SD, Goyaria S, Josea RC, Royc P, Talukdar NC (2015) First proteome study of sporadic flowering in bamboo species (Bambusa vulgaris and Dendrocalamus manipureanus) reveal the boom is associated with stress and mobile genetic elements. Gene 574:255–264

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850

    Article  PubMed  CAS  Google Scholar 

  • Malehorn DE, Borgmeyer JR, Smith CE, Shah DM (1994) Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays. Plant Physiol 106:1471–1481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marulanda M, Gutiérrez L, Márquez M (2005) Micropropagación de Guadua angustifolia Kunt. Revista Colombiana de Biotecnología Vegetal 87(27):5–15

    Google Scholar 

  • Mehta R, Sharma V, Sood A, Sharma M, Sharma RK (2011) Induction of somatic embryogenesis and analysis of genetic fidelity of in vitro derived plantlets of B. nutans wall., using AFLP markers. Eur J For Res 130:729–736

    Article  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  PubMed  CAS  Google Scholar 

  • Mishra Y, Patel PK, Yadav S, Shirin F, Ansari SA (2008) A micropropagation system for cloning of Bambusa tulda Roxb. Scientia Horticulturae 115:315–318

    Article  CAS  Google Scholar 

  • Mitin VV, Kochelap VA, Stroscio MA (eds) (2008) Introduction to nanoelectronics: materials for nanoelectronics. Cambridge University Press, Cambridge, pp 65–108

    Google Scholar 

  • Mudoi KD, Borthakur M (2009) In vitro micropropagation of Bambusa balcooa Roxb. Through nodal explants from field-grown culms and scope for upscaling. Curr Sci 96:962–966

    Google Scholar 

  • Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557

    Article  Google Scholar 

  • Nadgauda RS, John CK, Parasharami VA, Joshi MS, Mascarenhas AF (1997) A comparison of in vitro with in vivo flowering in bamboo: Bambusa arundinacea. Plant Cell Tissue Organ Cult 48:181–188

    Article  Google Scholar 

  • Nadgauda RS, Parasharami VA, Mascarenhas AF (1990) Precocious flowering and seeding behaviour in tissue-cultured bamboos. Nature 344:335–336

    Article  Google Scholar 

  • Nadha HK, Rahul K, Sharma RK, Anand M, Sood A (2013) In vitro propagation of Dendrocalamus asper and testing the clonal fidelity using RAPD and ISSR markers. Int J Curr Res 5(8):2060–2067

    Google Scholar 

  • Nayak S, Hatwar B, Jain A (2010) Effect of Cytokinin and auxins on meristem culture of Bambusa arundinacea. Pharm Lett 2(1):408–414

    CAS  Google Scholar 

  • Ndiaye A, Diallo M, Niang D, Gassama-Dia YK (2006) In vitro regeneration of adult trees of Bambusa vulgaris. Afr J Biotechnol 5:1245–1248

    CAS  Google Scholar 

  • Negi D, Saxena S (2011) In vitro propagation of Bambusa nutans wall. ex Munro through axillary shoot proliferation. Plant Biotechnol Rep 5:35–43

    Article  Google Scholar 

  • Ogita S (2005) Callus and cell suspension culture of bamboo plant, Phyllostachys nigra. Plant Biotechnol 22:119–125

    Article  CAS  Google Scholar 

  • Ogita S, Kashiwagi H, Kato Y (2008) In vitro node culture of seedlings in bamboo plant, Phyllostachys meyeri McClure. Plant Biotechnol 25:381–385

    Article  CAS  Google Scholar 

  • Ogita S, Kikuchi N, Nomura T, Kato Y (2011) A practical protocol for particle bombardment-mediated transformation of Phyllostachys bamboo suspension cells. Plant Biotechnol 28:43–50

    Article  CAS  Google Scholar 

  • Ojha A, Verma N, Kumar A (2009) In vitro micropropagation of economically important edible bamboo (Dendrocalamus asper) through somatic embryos from root, leaves and nodal segments explants. Res Crops 10(2):430–436

    Google Scholar 

  • Pandey BN, Singh NB (2012) Micropropagation of Dendrocalamus strictus nees from mature nodal explants. J Appl Nat Sci 4(1):5–9

    Article  CAS  Google Scholar 

  • Peng Z, Lu T, Li L, Liu X, Gao Z, Hu T, Yang X, Feng Q, Guan J, Weng Q, Fan D, Zhu C, Lu Y, Han B, Jiang Z (2010) Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol 10:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q (2016) Biocompatible cellulose- based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64

    Article  PubMed  CAS  Google Scholar 

  • Peng Z, Zhang C, Zhang Y, Hu T, Mu S, Li X, Gao J (2013) Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS One 8:e78944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiao G, Yang H, Zhang L, Han X, Liu M, Jiang J, Jiang Y, Zhuo R (2014) Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. In Vitro Cell Dev Biol Plant 50(4):385–391. https://doi.org/10.1007/s11627-013-9591-z

    Article  CAS  Google Scholar 

  • Raju RI, Roy SK (2016) Mass propagation of Bambusa bambos (L.) Voss through in vitro culture. J Biol Sci 5(2):15–26

    Google Scholar 

  • Ramanayake SMSD, Meemaduma VN, Weerawardene TE (2006) In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambusa vulgaris ‘Striata’). Sci Hortic 110:109113

    Article  CAS  Google Scholar 

  • Ramanayake SMSD, Wanniarachchi WAVR, Tennakoon TMA (2001) Axillary shoot proliferation and in vitro flowering in an adult giant bamboo, Dendrocalamus giganteus Wall. Ex Munro. In Vitro Cell Dev Biol - Plant 37(5):667–671

    Article  Google Scholar 

  • Ramanayake SMSD, Wanniarachehi WAVR (2003) Organogenesis in callus derived from an adult giant bamboo (Dendrocalamus giganteus Wall ex Munro). Scientia Horticulturae 98:195–200

    Article  CAS  Google Scholar 

  • Rathore TS, Kabade U, Jagadish MR, Somashekar PV, Viswanath S (2009) Micropropagation and evaluation of growth performance of the selected industrially important bamboo species in southern India. In: Proceedings. 8th World Bamboo Congress, vol 6. World Bamboo Organization, Plymouth, pp 41–55

    Google Scholar 

  • Reddy GM (2006) Clonal propagation of bamboo (Dendrocalamus strictus). Curr Sci 91(11):1462–1464

    Google Scholar 

  • Roco MC, Williams RS, Alivasatos P (1999) Nanotechnology research direction: IWGN workshop report. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Rout GR, Das P (1994) Somatic embryogenesis and in vitro flowering of 3 species of bamboo. Plant Cell Rep 13:683–686

    Article  PubMed  CAS  Google Scholar 

  • Safiuddin M, Gonzalez M, Cao JW, Tighe SL (2014) State of-the-art report on use of nano-materials in concrete. Int J Pavement Eng 15:940–949

    Article  CAS  Google Scholar 

  • Saini H, Arya ID, Arya S, Sharma R (2016) In vitro Micropropagation of Himalayan weeping bamboo, Drepanostachyum falcatum. Am J Plant Sci 7:1317–1324

    Google Scholar 

  • Salam K (2008) Bamboo for economic prosperity and ecological security with special reference to Northeast India. CBTC, Guwahati. www.indianfolklore.org/journals/index.php/inshani/article/viewPDFInterstitial/409/353

    Google Scholar 

  • Sanjaya Rathore TS, Ravishankar RV (2005) Micropropagation of P seudoxytenanthera stocksii Munro. In Vitro Cell Dev Biol-Plant 41:333–337

    Article  CAS  Google Scholar 

  • Scott N, Chan H (2002) Nanoscale science and engineering for agriculture and food system report. National Planning Workshop, Washington, DC

    Google Scholar 

  • Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenergy 19(4):229–244

    Article  CAS  Google Scholar 

  • Sharma P, Sarma KP (2013) In vitro propagation of Bambusa tulda: an important plant for better environment. J Environ Res Dev 7(3):1216–1223

    Google Scholar 

  • Sharma P, Sharma KP (2011) In vitro propagation of Bambusa balcooa for a better environment. International conference on advances in biotechnology and pharmaceutical sciences (ICABPS’2011) Bangkok Dec, pp 248–252

    Google Scholar 

  • Shirin F, Rana PK (2007) In vitro plantlet regeneration from nodal explants of field-grown culms in Bambusa glaucescens Willd. Plant Biotechnol Rep 1:141–114

    Article  Google Scholar 

  • Shroti RK, Upadhyay R, Niratka C, Singh M (2012) Micropropagation of Dandrocalamus asper through inter nodal segment. Bull Environ Pharmacol Life Sci 1(3):58–60

    Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012a) Micropropagation of Dendrocalamus asper {Schult. and Schult. F.} Backer ex K. Heyne: an exotic edible bamboo. J Plant Biochem Biotechnol 21:220–228

    Article  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012b) Seasonal influences on in vitro bud break in Dendrocalamus hamiltonii Arn. ex Munro nodal explants and effect of culture microenvironment on large scale shoot multiplication and plantlet regeneration. Indian J Plant Physiol 17:9–21

    CAS  Google Scholar 

  • Singh M, Jaiswal U, Jaiswal VS (2000) Thidiazuron-induced in vitro flowering in Dendrocalamus strictus Nees. Curr Sci 79:1529–1530

    CAS  Google Scholar 

  • Singla R, Sonib S, Markand P, Avnesh K, Mahesh K, Patial V, Padwad YS, Yadava SK (2017) In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym 155:152–162

    Article  PubMed  CAS  Google Scholar 

  • Sood P (2013) Development of genetic transformation system for Dendrocalamus hamiltonii Nees et Arn. Ex Munro. Ph.D Thesis, Guru Nanak Dev University, Amritsar

    Google Scholar 

  • Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plant 55:1–15

    Article  CAS  Google Scholar 

  • Sood A, Palni LMS, Sharma M, Chand G, Sharma OP (2002) Micropropagation of Dendrocalamus hamiltonii Munro (Maggar bamboo) using explants taken from seed-raised and field-tested plus plants. J Plant Biol 29:125–132

    Google Scholar 

  • Thatcher LF, Anderson JP, Singh KB (2005) Plant defence responses: what have we learnt from Arabidopsis? Funct Plant Biol 32:1–19

    Article  CAS  PubMed  Google Scholar 

  • Thiruvengadam M, Rekha KT, Chung IM (2011) Rapid in vitro micropropagation of Bambusa oldhamii Munro. Philipp Agric Scientist 94:7–13

    Google Scholar 

  • Venkatachalam P, Kalaiarasi K, Sreeramanan S (2015) Influence of plant growth regulators (PGRs) and various additives on in vitro plant propagation of Bambusa arundinacea (Retz.) wild: a recalcitrant bamboo species. J Genet Eng Biotechnol 13(2):193–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Waikhom SD, Louis B (2014) An effective protocol for micropropagation of edible bamboo species (Bambusa tulda and Melocanna baccifera) through nodal culture. Sci World J 2014:345794

    Article  CAS  Google Scholar 

  • Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics 11:726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen GS, Zhang LY, Zhang RM, Cao ZH, Zhou GM, Huang H, Wong MH (2011) Temporal and spatial dynamics of carbon fixation by moso bamboo (Phyllostachys pubescens) in subtropical China. Bot Rev 77:271–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu FS, Feng TY (1999) Delivery of plasmid DNA into intact plant cells by electroporation of plasmolyzed cells. Plant Cell Rep 18:381–386

    Article  CAS  Google Scholar 

  • Wysocki WP, Ruiz-Sanchez E, Yin Y, Duvall MR (2016) The floral transcriptomes of four bamboo species (Bambusoideae; Poaceae): support for common ancestry among woody bamboos. BMC Genomics 17:384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasin S, Liu L, Yao J (2013) Biosynthesis of silver nanoparticles by bamboo leaves extract and their antimicrobial activity. J Fiber Bio Eng Inform 6(1):77–84

    Article  Google Scholar 

  • Yasodha R, Kamala S, Kalaiarasi K (2010) Anatomical and biochemical changes associated with in vitro rhizogenesis in Dendrocalamus giganteus. Plant Biochem Biotechnol 19(2):217–222

    Article  Google Scholar 

  • Yasodha R, Kamala S, Kumar SPA, Kumar PD, Kalaiarasi K (2008) Effect of glucose on in vitro rooting of mature plants of Bambusa nutans. Sci Hortic 116:113–116

    Article  CAS  Google Scholar 

  • Yu HQ, Jiang ZH, Hse CY, Shupe TF (2008) Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). J Trop For Sci 20(4):258–263

    Google Scholar 

  • Yu Y, Tian G, Wang H, Fei B, Wang G (2011) Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique. Holzforschung 65:113–119

    CAS  Google Scholar 

  • Yuan JL, Yue JJ, Wu XL, Gu XP (2013) Protocol for callus induction and somatic embryogenesis in Moso bamboo. PLoS One 8(12):e81954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zang QL, Zhou L, Fei ZG, Yang HY, Wang XQ, Lin XC (2016) Callus induction and regeneration via shoot tips of Dendrocalamus hamiltonii. SpringerPlus 5:1799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang N, Fang W, Shi Y, Liu Q, Yang H, Gui R, Lin X (2010) Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii. Plant Cell Tissue Organ Cult 103:325–332

    Article  CAS  Google Scholar 

  • Zhang XM, Zhao L, Rabin ZL, Li DZ, Guo ZH (2012) De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 7(8):e42082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng YS, Hong W, Qiu EF, Chen LG (1998) Hormone content and distribution in Phyllostachys heterocycla cv. Pubescens during period of shoot emergence. Scientia Silvae Sinicae 34:100–104

    Google Scholar 

  • Zhou X, Torabi MLJ, Shen R, Zhang K (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces 6(5):3058–3074

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Yang P, Gao P, Tang D (2001) Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization. Plant Mol Biol Rep 29:224–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thapa, P., Bhattacharya, A., Sood, P., Devi, K., Sood, A. (2018). Advances in Bamboo Biotechnology: Present Status and Future Perspective. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_7

Download citation

Publish with us

Policies and ethics