Skip to main content

Reliability Challenges of Silicon-Based Physically Unclonable Functions

  • Chapter
  • First Online:
Physically Unclonable Functions

Abstract

This chapter aims to:

  1. 1.

    Explain the physical origins of the major reliability issues affecting CMOS technology.

  2. 2.

    Discuss how these issues can affect the usability of PUF technology.

  3. 3.

    Present a case study on the evaluation of the impact of CMOS aging on the quality metrics of PUF designs.

It is hoped that this chapter will give the reader an in-depth understanding of the reliability challenges in nano-scale CMOS technologies and their effects on the usability of silicon-based PUF designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Ferlet-Cavrois, L.W. Massengill, P. Gouker, Single event transients in digital CMOS—a review. IEEE Trans. Nucl. Sci. 60, 1767–1790 (2013)

    Article  Google Scholar 

  2. M. Agarwal, B.C. Paul, M. Zhang, S. Mitra, Circuit failure prediction and its application to transistor aging, in VLSI Test Symposium, 2007. 25th IEEE (2007), pp. 277–286

    Google Scholar 

  3. S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, S. Vrudhula, Predictive modeling of the NBTI effect for reliable design, in Custom Integrated Circuits Conference, 2006. CICC’06. IEEE (2006), pp. 189–192

    Google Scholar 

  4. R. Vattikonda, W. Wenping, C. Yu, Modeling and minimization of PMOS NBTI effect for robust nanometer design, in Design Automation Conference, 2006 43rd ACM/IEEE (2006), pp. 1047–1052

    Google Scholar 

  5. D. Rossi, M. Omaña, C. Metra, A. Paccagnella, Impact of bias temperature instability on soft error susceptibility, in IEEE Transaction on Very Large Scale Integration (VLSI) Systems, vol 23 (2015), pp. 743–751

    Google Scholar 

  6. B.C. Paul, K. Kunhyuk, H. Kufluoglu, M.A. Alam, K. Roy, Impact of NBTI on the temporal performance degradation of digital circuits. IEEE Electron Devices Lett. 26, 560–562 (2005)

    Article  Google Scholar 

  7. H.I. Yang, C.T. Chuang, W. Hwang, Impacts of contact resistance and NBTI/PBTI on SRAM with high-? Metal-gate devices, in IEEE International Workshop on Memory Technology, Design, and Testing, 2009. MTDT’09 (2009), pp. 27–30

    Google Scholar 

  8. H.K.M.A. Alam, D. Varghese, S. Mahapatra, A comprehensive model for pmos nbti degradation: recent progress. Microelectron. Reliab. 47, 853–862 (2007)

    Article  Google Scholar 

  9. M. Fukui, S. Nakai, H. Miki, S. Tsukiyama, A dependable power grid optimization algorithm considering NBTI timing degradation, in IEEE 9th International New Circuits and Systems Conference (NEWCAS) (2011), pp. 370–373

    Google Scholar 

  10. K. Joshi, S. Mukhopadhyay, N. Goel, S. Mahapatra, A consistent physical framework for N and P BTI in HKMG MOSFETs, in Reliability Physics Symposium (IRPS), 2012 IEEE International (2012), pp. 5A.3.1–5A.3.10

    Google Scholar 

  11. X. Li, J. Qin, J.B. Bernstein, Compact modeling of MOSFET wearout mechanisms for circuit-reliability simulation. IEEE Trans. Devices Mater. Reliab. 8, 98–121 (2008)

    Article  Google Scholar 

  12. F. Jianxin, S.S. Sapatnekar, Scalable methods for the analysis and optimization of gate oxide breakdown, in 2010 11th International Symposium on Quality Electronic Design (ISQED) (2010), pp. 638–645

    Google Scholar 

  13. K. Weide-Zaage, Kludt, M. Ackermann, V. Hein, M. Erstling, Life time characterization for a highly robust metallization, in 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (2015), pp. 1–6

    Google Scholar 

  14. S. Moreau, D. Bouchu, Reliability of dual damascene TSV for high density integration: the electromigration issue, in 2013 IEEE International Reliability Physics Symposium (IRPS) (2013), pp. CP.1.1–CP.1.5

    Google Scholar 

  15. S. Moreau, Y. Beilliard, P. Coudrain, D. Bouchu, R. Taïbi, L. D. Cioccio, Mass transport-induced failure in direct copper (Cu) bonding interconnects for 3-D integration, in 2014 IEEE International Reliability Physics Symposium (2014), pp. 3E.2.1–3E.2.6

    Google Scholar 

  16. J. Ziegler, W. Lanford, The effect of sea level cosmic rays on electronic devices, in 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (1980), pp. 70–71

    Google Scholar 

  17. T.C. May, M.H. Woods, Alpha-particle-induced soft errors in dynamic memories. IEEE Trans. Electron Devices 26, 2–9 (1979)

    Article  Google Scholar 

  18. D.C. Matthews, M.J. Dion, NSEU impact on commercial avionics, in 2009 IEEE International Reliability Physics Symposium (2009), pp. 181–193

    Google Scholar 

  19. S. Uznanski, R.G. Alia, E. Blackmore, M. Brugger, R. Gaillard, J. Mekki et al., The effect of proton energy on SEU cross section of a 16 Mbit TFT PMOS SRAM with DRAM capacitors. IEEE Trans. Nucl. Sci. 61, 3074–3079 (2014)

    Article  Google Scholar 

  20. J.G. Rollins, W.A. Kolasinski, D.C. Marvin, R. Koga, Numerical simulation of SEU induced latch-up. IEEE Trans. Nucl. Sci. 33, 1565–1570 (1986)

    Article  Google Scholar 

  21. Y. Lin, M. Zwolinski, B. Halak, A low-cost radiation hardened flip-flop, in 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2014), pp. 1–6

    Google Scholar 

  22. C. Slayman, Soft error trends and mitigation techniques in memory devices, in 2011 Proceedings—Annual Reliability and Maintainability Symposium (2011), pp. 1–5

    Google Scholar 

  23. Y. Lin, M. Zwolinski, B. Halak, A low-cost, radiation-hardened method for pipeline protection in microprocessors. IEEE Trans. Very Large Scale Integr. VLSI Syst. 24, 1688–1701 (2016)

    Article  Google Scholar 

  24. M.A. Elgamel, K.S. Tharmalingam, M.A. Bayoumi, Crosstalk noise analysis in ultra deep submicrometer technologies, in IEEE Computer Society Annual Symposium on VLSI (2003), pp. 189–192

    Google Scholar 

  25. B.P. Wong, A. Mittal, Z. Gau, G. Starr, Nano-CMOS circuits and physical design (Wiley, Hoboken, New Jersey, 2005)

    Google Scholar 

  26. B. Halak, A. Yakovlev, Fault-tolerant techniques to minimize the impact of crosstalk on phase encoded communication channels. Comput. IEEE Trans. 57, 505–519 (2008)

    Article  Google Scholar 

  27. C. Duan, A. Tirumala, S.P. Khatri, Analysis and avoidance of cross-talk in on-chip buses, in IEEE Conference on Hot Interconnects, (2001), pp. 133–138

    Google Scholar 

  28. M.A. Elgamel, K.S. Tharmalingam, M.A. Bayoumi, Noise-constrained interconnect optimization for nanometer technologies. Int. Symp. Circ. Syst. 5, 481–484 (2003)

    Google Scholar 

  29. M. Lampropoulos, B.M. Al-Hashimi, P. Rosinger, Minimization of crosstalk noise, delay and power using a modified bus invert technique. Des. Autom. Test Eur. Conf. Exhib. 2, 1372–1373 (2004)

    Article  Google Scholar 

  30. J. Nurmi, H. Tenhunen, J. Isoaho, A. Jantsch, Interconnect Centric Design for Advanced SoC and NoC (Kluwer Academic Publisher, Boston, 2004)

    MATH  Google Scholar 

  31. K.N. Patel, I.L. Markov, Error-correction and crosstalk avoidance in DSM busses, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol 12 (2004), pp. 1076–1080

    Google Scholar 

  32. D. Rossi, C. Metra, A.K. Nieuwland, A. Katoch, New ECC for crosstalk impact minimization. Des. Test Comput. IEEE 22, 340–348 (2005)

    Article  Google Scholar 

  33. D. Rossi, C. Metra, A.K. Nieuwland, A. Katoch, Exploiting ECC redundancy to minimize crosstalk impact. Des. Test Comput. IEEE 22, 59–70 (2005)

    Article  Google Scholar 

  34. A. Balasubramanian, A.L. Sternberg, B.L. Bhuva, L.W. Massengill, Crosstalk effects caused by single event hits in deep sub-micron CMOS technologies. Nucl. Sci. IEEE Trans. 53, 3306–3311 (2006)

    Article  Google Scholar 

  35. A.K. Palit, K.K. Duganapalli, W. Anheier, Crosstalk fault modeling in defective pair of interconnects. Integr. VLSI J. 41, 27–37 (2008)

    Article  Google Scholar 

  36. A. Kabbani, A.J. Al-Khalili, Estimation of ground bounce effects on CMOS circuits. IEEE Trans. Compon. Packag. Technol. 22, 316–325 (1999)

    Article  Google Scholar 

  37. S. Kim, C.J. Choi, D.K. Jeong, S.V. Kosonocky, S.B. Park, Reducing ground-bounce noise and stabilizing the data-retention voltage of power-gating structures. IEEE Trans. Electron Devices 55, 197–205 (2008)

    Article  Google Scholar 

  38. A. Antonopoulos, M. Bucher, K. Papathanasiou, N. Mavredakis, N. Makris, R.K. Sharma et al., CMOS small-signal and thermal noise modeling at high frequencies. IEEE Trans. Electron Devices 60, 3726–3733 (2013)

    Article  Google Scholar 

  39. Y.J. Lee, S.K. Lim, Co-optimization and analysis of signal, power, and thermal interconnects in 3-D ICs. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 30, 1635–1648 (2011)

    Article  Google Scholar 

  40. B. Halak, Partial coding algorithm for area and energy efficient crosstalk avoidance codes implementation. IET Comput. Digit. Tech. 8, 97–107 (2014)

    Google Scholar 

  41. C.D.S. Inc., Virtuoso relXpert reliability simulator user guide. Technical Report (2014)

    Google Scholar 

  42. S. Inc, HSPICE User Guide: Basic Simulation and Analysis. Technical Report (2013)

    Google Scholar 

  43. Y. Ye, F. Liu, M. Chen, S. Nassif, Y. Cao, Statistical modeling and simulation of threshold variation under random dopant fluctuations and line-edge roughness. IEEE Trans. Very Large Scale Integr. VLSI Syst. 19, 987–996 (2011)

    Article  Google Scholar 

  44. M.S. Mispan, B. Halak, M. Zwolinski, NBTI aging evaluation of PUF-based differential architectures, in 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS) (2016), pp. 103–108

    Google Scholar 

  45. M. Cortez, A. Dargar, S. Hamdioui, G.J. Schrijen, Modeling SRAM start-up behavior for Physical unclonable functions, in 2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) (2012), pp. 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basel Halak .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halak, B. (2018). Reliability Challenges of Silicon-Based Physically Unclonable Functions. In: Physically Unclonable Functions . Springer, Cham. https://doi.org/10.1007/978-3-319-76804-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76804-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76803-8

  • Online ISBN: 978-3-319-76804-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics