Skip to main content

Development of Bioactive Tellurite-Lanthanide Ions–Reinforced Hydroxyapatite Composites for Biomedical and Luminescence Applications

  • Chapter
  • First Online:
Tellurite Glass Smart Materials

Abstract

Human skeletal bone loss is a major health concern in the twenty-first century, with massive socioeconomic implications. The objective of the current work is to develop and characterize bioactive tellurite glasses for biomedical applications. As so, tellurium oxide- (TeO2) and lanthanide (Ln3+)-doped borate host systems have been developed and incorporated in a hydroxyapatite (HA) matrix, being adequately characterized regarding solid-state parameters and for in vitro biological response. In the proposed work, the following scientific questions will be addressed: Will the reported tellurite-lanthanide (Te-Ln3+) host glass-reinforced hydroxyapatite (HA) ceramic materials influence the cell behavior, such as proliferation and differentiation? Does this Te-Ln material show any luminescence response? Further, the research on lanthanide-based materials is promising, with potential application in prospective medical applications. Consequently, investigation into the role of Te-Ln3+-HA host scaffold materials for bone repair is a relatively new approach that deserves a special attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. See, http://www.nhs.uk/conditions/osteomyelitis

  2. See, http://www.medicinenet.com/osteomyelitis/article.htm

  3. R. Berendt et al., Osteomyelitis. Oxford Textbook of Medicine, 5th edn. (Oxford University Press, Oxford, UK, 2010)

    Google Scholar 

  4. P. Bejon et al., Medicine 41(12), 719 (2013)

    Article  Google Scholar 

  5. See, http://ec.europa.eu/dgs/health_food-safety/docs/communication_amr_2011_748_en.pdf

  6. See, http://ec.europa.eu/health/antimicrobial_resistance/docs/2015_amr_progress_report_en.pdf

  7. See, http://www.jpiamr.eu/wp-content/uploads/2014/12/AMR-Review-Paper-Tackling-a-crisis-for the -health-and-wealth-of-nations_1-2.pdf

    Google Scholar 

  8. L.A. Ba, M. Döring, V. Jamier, C. Jacob, Org. Biomol. Chem. 8(19), 4203 (2010)

    Article  Google Scholar 

  9. R.L.O.R. Cunha et al., An. Acad. Bras. Ciênc. 81(3), 393 (2009)

    Article  Google Scholar 

  10. See, http://nautilus.fis.uc.pt/st2.5/scenes-e/elem/e05200.html

  11. N. Sooraj Hussain, J. D. Santos (eds.), Biomaterials for Bone Regenerative Medicine (Trans Tech Publishers, Switzerland, 2010). ISBN- 13: 978-0-87849-153-7

    Google Scholar 

  12. N. Sooraj Hussain, et al., Chapter 13. Bonelike® graft for Bone regenerative applications, in Surface Engineered Surgical Tools and Medical Devices, ed. by M.J. Jaccson, W. Ahmad, (Springer Publications, Boston, 2007), pp. 477–512

    Google Scholar 

  13. D. Milovaca, et.al. Mater. Sci. Eng. C 42, 264 (2014)

    Article  Google Scholar 

  14. K. A. Gschneidner Jr., L. Eyring (eds.), Handbook on the ‘Physics and Chemistry of Rare Earths’, vol 25 (Elsevier, New York, 1998)

    Google Scholar 

  15. S.P. Fricker, Chem. Soc. Rev. 35(6), 524 (2006)

    Article  Google Scholar 

  16. J.T. Webster et al., Biomaterials 25, 2111 (2004)

    Article  Google Scholar 

  17. J. Coelho, N. Sooraj Hussain, et al. Current Trends on Glass and Ceramics Materials (Bentham Science Publishers, Sharjah, 2012), https://doi.org/10.2174/97816080545271130101, eISBN: 978-0-87849-153-7, ISBN: 978-0-87849-153-7, pp. 87–115

  18. P. Yang et, al. Biomaterials 29, 4341 (2008)

    Article  Google Scholar 

  19. I.S. Yahia, M. Shkir, et al., Mater. Sci. Eng. C 72, 472 (2017)

    Article  Google Scholar 

  20. G. El-Damrawi, H. Doweidar, H. Kamal, SILICON 9(4), 503 (2017)

    Article  Google Scholar 

  21. N. Sooraj Hussain, J. D. Santos (eds.), Physics and Chemistry of Rare-Earth Ions Doped Glasses, Reinhardstrasse 18, CH-8008 Zurich, Switzerland (Trans Tech Publishers, Enfield, 2008)

    Google Scholar 

  22. G. Senthil Murugan, Y. Ohishi, J. Non-Cryst. Solids 341(1–3), 86 (2004)

    Article  ADS  Google Scholar 

  23. V.C. Veeranna Gowda, C. Narayana Reddy, K.C. Radha, R.V. Anavekar, J. Etourneau, K.J. Rao, J. Non-Cryst. Solids 353(11–12), 1150 (2007)

    Article  ADS  Google Scholar 

  24. V.O. Sokolov, V.G. Plotnichenko, et al., J. Non-Cryst. Solids 352(52–54), 5618 (2006)

    Article  ADS  Google Scholar 

  25. R. El-Mallawany, Tellurite Glasses Handbook, Physical Properties and Data (CRC Press, Boca Raton, 2002)

    MATH  Google Scholar 

  26. R. El-Mallawany et al., Opt. Mater. 26(3), 267 (2004)

    Article  ADS  Google Scholar 

  27. N.V.V. Prasad, K. Annapurna, N.S. Hussain, et al., Mater. Lett. 57(13–14), 2071 (2003)

    Article  Google Scholar 

  28. T.V.R. Rao, R.R. Reddy, et al., Infrared Phys. Technol. 41(4), 247 (2000)

    Article  ADS  Google Scholar 

  29. K. Binnemans, C. Gorller-Walrand, Chem. Phys. Lett. 235, 163 (1995)

    Article  ADS  Google Scholar 

  30. U.K. Maheshvaran, K. Marimuthu, G. Muralidharan, J. Lumin. 176, 15 (2016)

    Article  Google Scholar 

  31. C.R. Kesavulu et al., J. Alloys Comp. 726, 1062 (2017)

    Article  Google Scholar 

  32. N. Sooraj Hussain, K. Annapurna, S. Buddhudu, Phys. Chem. Glasses 38(1), 51 (1997)

    Google Scholar 

  33. J. Coelho, J. Azevedo, G. Hungerford, N. Sooraj Hussain, Opt. Mater. 33, 1167 (2011)

    Article  ADS  Google Scholar 

  34. N. Akiyama, S. Muramatsu, et al., J. Lumin. 87, 568 (2000)

    Article  Google Scholar 

  35. B. Marmodée, J.S. De Klerk, et al., Anal. Chim. Acta 652, 285 (2009)

    Article  Google Scholar 

  36. J. R. Lakowicz (ed.), Principles of Fluorescence Spectroscopy, 2nd edn. (Kluwer Academic/Plenum Publishers, New York, 1999)

    Google Scholar 

  37. A. Herrmann, D. Ehrt, J. Non-Cryst. Solids 354, 916 (2008)

    Article  ADS  Google Scholar 

  38. P. Bernard et al., J. Eur. Ceram. Soc. 16, 195 (1996)

    Article  Google Scholar 

  39. D.K. Patel et al., Polymer 106, 109 (2016)

    Article  Google Scholar 

  40. K. Mitra, J. Lippincott-Schwartz, Analysis of Mitochondrial Dynamics and Functions Using Imaging Approaches, Curr. Protoc. Cell Biol. 46: 4.25.1–4.25.21 (2010), https://doi.org/10.1002/0471143030.cb0425s46

  41. G. Jacquemet, H. Hamidi et.al. Curr. Opin. Cell Biol. 36, 23 (2015)

    Article  Google Scholar 

  42. E. Birmingham et al., Eur. Cells Mater. 23, 13 (2012)

    Article  Google Scholar 

  43. D.S. Morais, J. Coelho, M.P. Ferraz, P.S. Gomes, et al., J. Mater. Chem. B 2, 5872 (2014)

    Article  Google Scholar 

  44. Y. Goh, A. Alshemary, et al., Ceram. Int. 40, 729 (2014)

    Article  Google Scholar 

  45. C.J. Wilson et al., Tissue Eng. 11, 1 (2005)

    Article  Google Scholar 

  46. J. Zhang et al., Mini. Rev. Med. Chem. 11, 678 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

The authors (SHN and AS) would like to thank the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 753636.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Nandyala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandyala, S.H., Gomes, P.S., Hungerford, G., Grenho, L., Fernandes, M.H., Stamboulis, A. (2018). Development of Bioactive Tellurite-Lanthanide Ions–Reinforced Hydroxyapatite Composites for Biomedical and Luminescence Applications. In: El-Mallawany, R. (eds) Tellurite Glass Smart Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-76568-6_12

Download citation

Publish with us

Policies and ethics