Skip to main content

Using a Serious Game to Assess Spatial Memory in Children and Adults

  • Conference paper
  • First Online:
Book cover Advances in Computer Entertainment Technology (ACE 2017)

Abstract

Short-term spatial memory has traditionally been assessed using visual stimuli, but not auditory stimuli. In this paper, we design and test a serious game with auditory stimuli for assessing short-term spatial memory. The interaction is achieved by gestures (by raising your arms). The auditory stimuli are emitted by smart devices placed at different locations. A total of 70 participants (32 children and 38 adults) took part in the study. The outcomes obtained with our game were compared with traditional methods. The results indicated that the outcomes in the game for the adults were significantly greater than those obtained by the children. This result is consistent with the assumption that the ability of humans increases continuously during maturation. Correlations were found between our game and traditional methods, suggesting its validity for assessing spatial memory. The results indicate that both groups easily learn how to perform the task and are good at recalling the locations of sounds emitted from different positions. With regard to satisfaction with our game, the mean scores of the children were higher for nearly all of the questions. The mean scores for all of the questions, except one, were greater than 4 on a scale from 1 to 5. These results show the satisfaction of the participants with our game. The results suggest that our game promotes engagement and allows the assessment of spatial memory in an ecological way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to gamefulness: defining “Gamification”. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments (MindTrek 2011), pp. 9–15. ACM, New York (2011)

    Google Scholar 

  2. Wiemeyer, J., Kliem, A.: Serious games in prevention and rehabilitation - a new panacea for elderly people? Eur. Rev. Aging Phys. Act. 9, 41–50 (2012)

    Article  Google Scholar 

  3. Catalano, C.E., Luccini, A.M., Mortara, M.: Best practices for effective design and evaluation of serious games. Int. J. Serious Games 1, e1–e13 (2014)

    Article  Google Scholar 

  4. Whyte, E.M., Smyth, J.M., Scherf, K.S.: Designing serious game interventions for individuals with Autism. J. Autism Dev. Disord. 45, 3820–3831 (2015)

    Article  Google Scholar 

  5. Kim, K.-W., Choi, Y., You, H., Na, D.L., Yoh, M.-S., Park, J.-K., Seo, J.-H., Ko, M.-H.: Effects of a serious game training on cognitive functions in older adults. J. Am. Geriatr. Soc. 63, 603–605 (2015)

    Article  Google Scholar 

  6. Lezak, M.D.: Neuropsychological Assessment. Oxford University Press, New York (1995)

    Google Scholar 

  7. Rourke, B.P.: Arithmetic disabilities, specific and otherwise: a neuropsychological perspective. J. Learn. Disabil. 26, 214–226 (1993)

    Article  Google Scholar 

  8. Arai, S., Okamoto, Y., Fujioka, T., Inohara, K., Ishitobi, M., Matsumura, Y., Jung, M., Kawamura, K., Takiguchi, S., Tomoda, A., Wada, Y., Hiratani, M., Matsuura, N., Kosaka, H.: Altered frontal pole development affects self-generated spatial working memory in ADHD. Brain Dev. 38, 471–480 (2016)

    Article  Google Scholar 

  9. Dehn, M.J.: Cognitive processing deficits. In: Morris, R.J., Mather, N. (eds.) Evidence-Based Interventions for Students with Learning and Behavioral Challenges, pp. 258–287. Routledge, New York and London (2008)

    Google Scholar 

  10. Graham, J.A., Heywood, S.: The effects of elimination of hand gestures and of verbal codability on speech performance. Eur. J. Soc. Psychol. 5, 189–195 (1975)

    Article  Google Scholar 

  11. Rauscher, F.H., Krauss, R.M., Chen, Y.: Gesture, speech, and lexical access: the role of lexical movements in speech production. Psychol. Sci. 7, 226–231 (1996)

    Article  Google Scholar 

  12. Khan, R.Z., Ibraheem, N.A.: Hand gesture recognition: a literature review. Int. J. Artif. Intell. Appl. 3(4), 161–174 (2012)

    Article  Google Scholar 

  13. Pisharady, P.K., Saerbeck, M.: Recent methods and databases in vision-based hand gesture recognition: a review. Comput. Vis. Image Underst. 141, 152–165 (2015)

    Article  Google Scholar 

  14. Agrawal, S., Constandache, I., Gaonkar, S., Choudhury, R.R., Caves, K., DeRuyter, F.: Using mobile phones to write in air. In: Proceedings of the 7th ACM International Conference on Mobile Systems, Applications, and Services, Washington, DC, USA, pp. 15–28 (2011)

    Google Scholar 

  15. Park, T., Lee, J., Hwang, I., Yoo, C., Nachman, L., Song, J.: Egesture: a collaborative architecture for energy-efficient gesture recognition with hand-worn sensor and mobile devices. In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, pp. 260–273. ACM, Seattle (2011)

    Google Scholar 

  16. Beh, J., Han, D.K., Durasiwami, R., Ko, H.: Hidden Markov model on a unit hyper-sphere space for gesture trajectory recognition. Pattern Recognit. Lett. 36, 144–153 (2014)

    Article  Google Scholar 

  17. Suk, H.I., Sin, B.K., Lee, S.W.: Hand gesture recognition based on dynamic Bayesian network framework. Pattern Recognit. 43(9), 3059–3072 (2010)

    Article  MATH  Google Scholar 

  18. Yang, M.H., Ahuja, N., Tabb, M.: Extraction of 2D motion trajectories and its application to hand gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1061–1074 (2002)

    Article  Google Scholar 

  19. Shen, X.H., Hua, G., Williams, L., Wu, Y.: Dynamic hand gesture recognition: an exemplar-based approach from motion divergence fields. Image Vis. Comput. 30(3), 227–235 (2012)

    Article  Google Scholar 

  20. Patwardhan, K.S., Roy, S.D.: Hand gesture modelling and recognition involving changing shapes and trajectories, using a predictive eigentracker. Pattern Recognit. Lett. 28, 329–334 (2007)

    Article  Google Scholar 

  21. Shin, M.C., Tsap, L.V., Goldgof, D.B.: Gesture recognition using Bezier curves for visualization navigation from registered 3-D data. Pattern Recognit. 37(5), 1011–1024 (2004)

    Article  Google Scholar 

  22. Kuremoto, T., Kinoshita, Y., Feng, L., Watanabe, S., Kobayashi, K., Obayashi, M.: A gesture recognition system with retina-v1 model and one-pass dynamic programming. Neurocomputing 116, 291–300 (2012)

    Article  Google Scholar 

  23. Corradini, A.: Dynamic time warping for off-line recognition of a small gesture vocabulary. In: Proceedings of the IEEE International Workshop on Computer Vision (ICCVW 2001), pp. 82–89. IEEE (2001)

    Google Scholar 

  24. Breuer, P., Eckes, C., Müller, S.: Hand gesture recognition with a novel IR time-of-flight range camera–a pilot study. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2007. LNCS, vol. 4418, pp. 247–260. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71457-6_23

    Chapter  Google Scholar 

  25. Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE Multi Med. 19(2), 4–10 (2012)

    Article  Google Scholar 

  26. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: The IEEE Computer Vision and Pattern Recognition, pp. 116–124. ACM, New York (2011)

    Google Scholar 

  27. Martín-SanJosé, J.F., Juan, M.C., Gil-Gómez, J.A., Rando, N.: Flexible learning itinerary vs. linear learning itinerary. Sci. Comput. Program. 88, 3–21 (2014)

    Article  Google Scholar 

  28. Martín-SanJosé, J.F., Juan, M.C., Torres, E., Vicent, M.J.: Playful interaction for learning collaboratively and individually. J. Ambient Intell. Smart Environ. 6, 295–311 (2014)

    Google Scholar 

  29. Martín-SanJosé, J.F., Juan, M.C., Mollá, R., Vivó, R.: Advanced displays and natural user interfaces to support learning. Interact. Learn. Environ. 25(1), 17–34 (2017)

    Article  Google Scholar 

  30. Rodríguez-Andrés, D., Juan, M. C., Mollá, R., Méndez-López, M.: A 3D serious game for dental learning in higher education. In: Proceedings of the 17th IEEE International Conference on Advanced Learning Technologies (ICALT2017), pp. 111–115. IEEE (2017)

    Google Scholar 

  31. Homer, B., Kinzer, C., Plass, J., Letourneau, S., Hoffman, D., Bromley, M., Hayward, E., Turkay, S., Kornak, Y.: Moved to learn: the effects of interactivity in a Kinect-based literacy game for beginning readers. Comput. Educ. 74, 37–49 (2014)

    Article  Google Scholar 

  32. Lin, J., Sun, Q., Li, G., He, Y.: SnapBlocks: a snapping interface for assembling toy blocks with XBOX kinect. Multimed. Tools Appl. 73, 2009–2032 (2014)

    Article  Google Scholar 

  33. Sun, C., Zhang, T., Bao, B.K., Xu, C., Mei, T.: Discriminative exemplar coding for sign language recognition with Kinect. IEEE Trans. Cybern. 43, 1418–1428 (2013)

    Article  Google Scholar 

  34. Lee, G.C., Yeh, F.-H., Hsiao, Y.-H.: Kinect-based Taiwanese sign-language recognition system. Multimed. Tools Appl. 75, 261–279 (2016)

    Article  Google Scholar 

  35. Armin, K., Mehrana, Z., Fatemeh, D.: Using kinect in teaching children with hearing and visual impairment. In: Proceedings of the 4th International Conference on e-Learning and e-Teaching (ICELET 2013), pp. 86–90. IEEE (2013)

    Google Scholar 

  36. Retalis, S., Boloudakis, M., Altanis, G., Nikou, N.: Children with motor impairments play a kinect learning game: first findings from a pilot case in an authentic classroom environment. Interact. Des. Archit. 19, 91–104 (2014)

    Google Scholar 

  37. Luna-Oliva, L., Ortiz-Gutiérrez, R.M., Cano-de la Cuerda, R., Piédrola, R.M., Alguacil-Diego, I.M., Sánchez-Camarero, C., Martínez Culebras, M.D.C.: Kinect Xbox 360 as a therapeutic modality for children with cerebral palsy in a school environment: a preliminary study. NeuroRehabilitation 33, 513–521 (2013)

    Google Scholar 

  38. Jordan, K., King, M., Hellersteth, S., Wirén, A., Mulligan, H.: Feasibility of using a humanoid robot for enhancing attention and social skills in adolescents with autism spectrum disorder. Int. J. Rehabil. Res. 36, 221–227 (2013)

    Article  Google Scholar 

  39. Moriguchi, Y., Kanda, T., Ishiguro, H., Shimada, Y., Itakura, S.: Can young children learn words from a robot? Interact. Stud. 12, 107–118 (2011)

    Article  Google Scholar 

  40. Movellan, J.R., Eckhardt, M., Virnes, M., Rodriguez, A.: Sociable robot improves toddler vocabulary skills. In: Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, pp. 307–308. ACM, New York (2009)

    Google Scholar 

  41. Keren, G., Fridin, M.: Kindergarten social assistive robot (KindSAR) for children’s geometric thinking and metacognitive development in preschool education: a pilot study. Comput. Hum. Behav. 35, 400–412 (2014)

    Article  Google Scholar 

  42. Keren, G., Ben-David, A., Fridin, M.: Kindergarten assistive robotics (KAR) as a tool for spatial cognition development in pre-school education. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1084–1089. IEEE (2012)

    Google Scholar 

  43. Timms, M.J.: Letting artificial intelligence in education out of the box: educational cobots and smart classrooms. Int. J. Artif. Intell. Educ. 26, 701–712 (2016)

    Article  Google Scholar 

  44. Randell, C., Price, S., Rogers, Y., Harris, E., Fitzpatrick, G.: The ambient horn: designing a novel audio-based learning experience. Pers. Ubiquitous Comput. 8, 177–183 (2004)

    Article  Google Scholar 

  45. de Graaf, M.M.A., Allouch, S.B., Klamer, T.: Sharing a life with Harvey: exploring the acceptance of and relationship-building with a social robot. Comput. Hum. Behav. 43, 1–14 (2015)

    Article  Google Scholar 

  46. Juan, M.-C., Mendez-Lopez, M., Perez-Hernandez, E., Albiol-Perez, S.: Augmented reality for the assessment of children’s spatial memory in real settings. PLoS ONE 9, e113751 (2014)

    Article  Google Scholar 

  47. Mendez-Lopez, M., Perez-Hernandez, E., Juan, M.C.: Learning in the navigational space: age differences in a short-term memory for objects task. Learn. Individ. Differences 60, 11–22 (2016)

    Article  Google Scholar 

  48. Rodríguez-Andrés, D., Juan, M.-C., Méndez-López, M., Pérez-Hernández, E., Lluch, J.: MnemoCity task: assessment of children’s spatial memory using stereoscopy and virtual environments. PLoS ONE 11, e0161858 (2016)

    Article  Google Scholar 

  49. Cárdenas-Delgado, S., Méndez-López, M., Juan, M.-C., Pérez-Hernández, E., Lluch, J., Vivó, R.: Using a virtual maze task to assess spatial short-term memory in adults. In: Proceedings of the International Conference on Computer Graphics Theory and Applications, pp. 46–57. Scitepress (2017)

    Google Scholar 

  50. Lumsden, J., Edwards, E.A., Lawrence, N.S., Coyle, D., Munafò, M.R.: Gamification of cognitive assessment and cognitive training: a systematic review of applications and efficacy. JMIR Serious Games 4, e11 (2016)

    Article  Google Scholar 

  51. Reynolds, C.R., Bigler, E.D.: TOMAL test of memory and learning: examiner’s manual. Austin, TX: Pro-Ed [TOMAL Test de memoria y aprendizaje. Manual de interpretación (E. Goikoetxea, & Departamento I + D de TEA Ediciones, Adapters), (TEA Ediciones, Madrid)] (2001)

    Google Scholar 

  52. Brancal, M.F., Alcantud, F., Ferrer, A.M., Quiroga, M.E.: EDAF: Evaluación de la discriminación auditiva y fonológica. TEA Ediciones, Lebón, Madrid (2009)

    Google Scholar 

  53. Kamphaus, K.W., Perez-Hernandez, E., Sanchez-Sanchez, F.: Cuestionario de Evaluación Clínica de la Memoria. TEA Ediciones, Madrid (in press)

    Google Scholar 

  54. Lewis, J.R.: IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int. J. Hum. Comput. Interact. 7(1), 57–78 (1995)

    Article  Google Scholar 

  55. Lund, A.M.: Measuring usability with the USE questionnaire. Usability User Exp. Newslett. STC Usability SIG. 8(2), 1–4 (2001)

    Google Scholar 

  56. Vallejo, V., Wyss, P., Chesham, A., Mitache, A.V., Müri, R.M., Mosimann, U.P., Nef, T.: Evaluation of a new serious game based multitasking assessment tool for cognition and activities of daily living: comparison with a real cooking task. Comput. Hum. Behav. 70, 500–506 (2017)

    Article  Google Scholar 

  57. Tarnanas, I., Tsolaki, M., Nef, T.M., Müri, R., Mosimann, U.P.: Can a novel computerized cognitive screening test provide additional information for early detection of Alzheimer’s disease? Alzheimer’s Dementia 10, 790–798 (2014)

    Article  Google Scholar 

  58. Spooner, D., Pachana, N.: Ecological validity in neuropsychological assessment: a case for greater consideration in research with neurologically intact populations. Arch. Clin. Neuropsychol. 21, 327–337 (2006)

    Article  Google Scholar 

  59. Tarnanas, I., Schlee, W., Tsolaki, M., Müri, R., Mosimann, U., Nef, T.: Ecological validity of virtual reality daily living activities screening for early dementia: longitudinal study. JMIR Serious Games 1, e1 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was mainly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the CHILDMNEMOS project (TIN2012-37381-C02-01) and cofinanced by the European Regional Development Fund (FEDER).

Other financial support was received from the Government of the Republic of Ecuador through the Scholarship Program of the Secretary of Higher Education, Science, Technology and Innovation (SENESCYT), the Conselleria d’Educació, Investigació, Cultura i Esport through the grant for consolidable research groups in favour of the Computer Graphics and Multimedia group of the ai2 (PI. Prof. M.-Carmen Juan; Ref. AICO/2017/041) (2017–2018), the Government of Aragon (Department of Industry and Innovation), and the European Social Fund for Aragon.

We would like to thank the following for their contributions: Jimena Bonilla; the users who participated in the study; and the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-Carmen Juan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loachamín-Valencia, M., Juan, MC., Méndez-López, M., Pérez-Hernández, E. (2018). Using a Serious Game to Assess Spatial Memory in Children and Adults. In: Cheok, A., Inami, M., Romão, T. (eds) Advances in Computer Entertainment Technology. ACE 2017. Lecture Notes in Computer Science(), vol 10714. Springer, Cham. https://doi.org/10.1007/978-3-319-76270-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76270-8_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76269-2

  • Online ISBN: 978-3-319-76270-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics