Skip to main content

Impact of Mobility in Spectrum Sensing Capacity

  • Conference paper
  • First Online:
Book cover Cognitive Radio Oriented Wireless Networks (CrownCom 2017)

Abstract

This work evaluates the secondary users’ (SUs) transmission capability considering that the primary users (PUs) can move to different positions. The transmission capability identifies the available opportunities for SU’s transmission. No opportunities are available when mobile PUs are active within the SU’s sensing region. We also consider the scenario when the PUs are undesirable detected active when they are not located within the SUs’ sensing region. Our analysis indicate that the transmission capability increases as the average mobility of the PUs decreases, which is confirmed by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For every PU we have assumed P Tx = 103 mW.

References

  1. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutorials 11, 116–130 (2009)

    Article  Google Scholar 

  2. Urkowitz, H.: Energy detection of unknown deterministic signals. Proc. IEEE 55, 523–531 (1967)

    Article  Google Scholar 

  3. Zahedi-Ghasabeh, A., Tarighat, A., Daneshrad, B.: Spectrum sensing of OFDM waveforms using embedded pilots in the presence of impairments. IEEE Trans. Veh. Technol. 61, 1208–1221 (2012)

    Article  Google Scholar 

  4. Bouzegzi, A., Ciblat, P., Jallon, P.: Matched filter based algorithm for blind recognition of OFDM systems. In: Proceedings of IEEE VTC 2008-Fall, pp. 1–5, September 2008

    Google Scholar 

  5. Al-Habashna, A., Dobre, O.A., Venkatesan, R., Popescu, D.C.: Cyclostationarity- based detection of LTE OFDM signals for cognitive radio systems. In: Proceedings of IEEE GLOBECOM 2010, pp. 1–6, December 2010

    Google Scholar 

  6. Masonta, M.T., Mzyece, M., Ntlatlapa, N.: Spectrum decision in cognitive radio networks: a survey. IEEE Commun. Surv. Tutorials 15, 1088–1107 (2013)

    Article  Google Scholar 

  7. Sun, H., Nallanathan, A., Wang, C.-X., Chen, Y.: Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel. Commun. 20, 74–81 (2013)

    Google Scholar 

  8. Lee, W.-Y., Akyildiz, I.F.: Optimal spectrum sensing framework for cognitive radio networks. IEEE Trans. Wireless Commun. 7, 3845–3857 (2008)

    Article  Google Scholar 

  9. Cacciapuoti, A.S., Akyildiz, I.F., Paura, L.: Primary-user mobility impact on spectrum sensing in cognitive radio networks. In: 22nd IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 451–456, Toronto (2011)

    Google Scholar 

  10. Cacciapuoti, A.S., Akyildiz, I.F., Paura, L.: Optimal primary-user mobility aware spectrum sensing design for cognitive radio networks. IEEE J. Sel. Areas Commun. 31, 2161–2172 (2013)

    Article  Google Scholar 

  11. Han, W., Li, J., Liu, Q., Zhao, L.: Spatial false alarms in cognitive radio. IEEE Commun. Lett. 15, 518–520 (2011)

    Article  Google Scholar 

  12. Han, W., Li, J., Li, Z., Si, J., Zhang, Y.: Spatial false alarm in cognitive radio network. IEEE Trans. Sig. Process. 61, 1375–1388 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. Mob. Comput. 353, 153–181 (1996)

    Article  Google Scholar 

  14. Bettstetter, C., Resta, G., Santi, P.: The node distribution of the random way- point mobility model for wireless ad hoc networks. IEEE Trans. Mob. Comput. 2, 257–269 (2003)

    Article  Google Scholar 

  15. Haenggi, M., Ganti, R.K.: Interference in large wireless networks. Found. Trends Netw. 3, 127–248 (2009)

    Article  MATH  Google Scholar 

  16. Moschopoulos, P.G.: The distribution of the sum of independent gamma random variables. Ann. Inst. Stat. Math. 37, 541–544 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Portuguese Science and Technology Foundation (FCT/MEC) under the project UID/EEA/50008/2013 and grant SFRH/BD/108525/2015. The work was also supported by the “Faculdade de Cincias e Tecnologia” - Nova University of Lisbon, through the PhD Program in Electrical and Computer Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Irio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Irio, L., Oliveira, R. (2018). Impact of Mobility in Spectrum Sensing Capacity. In: Marques, P., Radwan, A., Mumtaz, S., Noguet, D., Rodriguez, J., Gundlach, M. (eds) Cognitive Radio Oriented Wireless Networks. CrownCom 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-76207-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76207-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76206-7

  • Online ISBN: 978-3-319-76207-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics