Skip to main content

Reduction of Energy Consumption in Gas-Liquid Mixture Production Using a Membrane Diffuser and HE-3X Stirrer

  • Conference paper
  • First Online:
Practical Aspects of Chemical Engineering

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

  • 1168 Accesses

Abstract

Mechanical mixing of liquids in the presence of gas is used when it is necessary to exchange mass between the liquid and gas phase whose special case is aeration of liquid. Mixing of liquid-gas multiphase systems has been widely used in industrial absorption (purely physical and with chemical reaction) processes of hardly soluble gases and biochemical engineering. The rate of liquid mass transfer limits the whole process. By increasing the surface of the interphase contact and splitting large gas bubbles into finer ones, it is possible to significantly intensify the process. In this case, the barbotage itself is insufficient and the mechanical stirring apart from the increase in the interphase contact area and the shorter restoration time of the limiting layer, is responsible for even circulation throughout the apparatus. For this purpose, the modernization of the process has been introduced by introducing a membrane diffuser into the test apparatus, which is used to efficiently introduce the gas into the mixer and to guarantee the maximum dispersion of the air bubbles at low volume flow rates. In addition, the mixer is fitted with a modified HE-3X stirrer which is to increase the residence time of the air bubbles and reduce the energy consumption for creation of gas-liquid mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • BƂasiƄski H, MƂodziƄski B (1976) Aparatura przemysƂu chemicznego. WNT, Warszawa

    Google Scholar 

  • Brauer H (1985) Ein- und Mehrphasen Strömungen. Biotechnology, vol 2. Weinheim

    Google Scholar 

  • Broniarz-Press L, Szaferski W (2005) Effect of truncated cone gas distributor type on gas hold-up and power consumption in a mixer. In: Proceeding of 7th World congress of chemical engineering, Paper No. P42-059:1–9, Glasgow

    Google Scholar 

  • Broniarz-Press L, Szaferski W (2008) Aeration using membrane diffusers in a tank equipped with two impellers on a common shaft. Chem Proc Eng 29(1):61–73

    CAS  Google Scholar 

  • Broniarz-Press L, Szaferski W, Sadowska J (2005) Effect of the geometry of plate membrane diffusers on hold-up and power consumption during liquid aeration in an agitated tank. InĆŒ Apar Chem 44(36):17–21

    CAS  Google Scholar 

  • Broniarz-Press L, Borowski J, Szaferski W (2006a) Mixing in two-phase systems in the presence of non-Newtonian media. Polish J Chem Techn 8(1):54–60

    CAS  Google Scholar 

  • Broniarz-Press L, Szaferski W, Ochowiak M (2006b) Analiza przydatnoƛci dystrybutorĂłw membranowych gazu do napowietrzania cieczy w mieszalnikach. InĆŒ Ap Chem 45(37):31–33

    CAS  Google Scholar 

  • Broniarz-Press L, Szaferski W, Ochowiak M (2006c) Analiza stopnia zatrzymywania gazu w mieszanych ukƂadach nienewtonowskich. InĆŒ Ap Chem 45(37):18–20

    CAS  Google Scholar 

  • Broniarz-Press L, Szaferski W, Ochowiak M (2006d) The effect of the construction of membrane diffusers on the gas hold-up in Newtonian systems. Polish J Chem Technol 8(4):42–44

    Google Scholar 

  • Chemineer. http://www.chemineer.com/literature

  • Ding A, Liang H, Li G et al (2016) Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water. J Memb Sci 510:382–390

    Article  CAS  Google Scholar 

  • Doran PM (2013) Bioprocess engineering principles. Academic Press, London

    Google Scholar 

  • Dyląg M, Talaga J (1991) Hydrodynamika mechanicznego mieszania ukƂadu trĂłjfazowego ciecz–gaz–ciaƂo staƂe. Inz Chem i Proc 12(1):3–25

    Google Scholar 

  • Foust C, Mack DE, Rushton JH (1944) Gas-liquid contacting by mixers. Ind Eng Chem 36:517–522

    Article  CAS  Google Scholar 

  • Frijlink JJ, Bakker A, Smith JM (1990) Suspension of solid particles with gassed impellers. Chem Eng Sci 45(7):1703–1718

    Article  CAS  Google Scholar 

  • GawroƄski R (1999) Procesy oczyszczania cieczy. Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw

    Google Scholar 

  • Gluz MD, Pavlushenko IS (1967) Power consumption in agitation of non-Newtonian liquids. J Appl Chem USSR 40:2475

    Google Scholar 

  • Heim A, KrasaÌ”wski A, Rzyski E et al (1995) Aeration of bioreactors by self-aspirating impellers. Chem Eng J Biochem Eng J 58:59–63

    Article  CAS  Google Scholar 

  • Hiruta O, Yamamura K, Takebe H et al (1997) Application of Maxblend FermentorÂź for microbial processes. J Ferment Bioeng 83:79–86

    Article  CAS  Google Scholar 

  • Holland FA, Chapman FS (1966) Liquid mixing and processing in stirred tanks. Reinhold Publishing Co., New York

    Google Scholar 

  • KamieƄski J (2004) Mieszanie ukƂadĂłw wielofazowych. WNT, Warszawa

    Google Scholar 

  • KembƂowski Z (1985) Podstawy teoretyczne inĆŒynierii chemicznej i procesowej. WNT, Warsaw

    Google Scholar 

  • Kuncewicz C, Stelmach J (2010) Zastosowanie autokorelacji do okreƛlania prędkoƛci pęcherzykĂłw gazu na podstawie zdjęć z podwĂłjną ekspozycją. InĆŒ Ap Chem 49(1):63–64

    Google Scholar 

  • KurasiƄski T, Kuncewicz C, Stelmach J (2010) Distribution of values of the volumetric mass transfer coefficient during aeration of liquid using a self-aspirating impeller. Chem Proc Eng 31(3):505–514

    Google Scholar 

  • Ledakowicz S, Nettelhoff H, Deckwer WD (1984) Gas-liquid mass transfer data in a stirred autoclave reactor. Ind Eng Chem Fundam 13(4):510–512

    Article  Google Scholar 

  • Lin C (2008) A negative-pressure aeration system for composting food wastes. Bioresour Technol 99:7651–7656

    Article  CAS  Google Scholar 

  • Liwarska-Bizukojc E, Ledakowicz S (2003) Estimation of viable biomass in aerobic biodegradation processes of organic fraction of municipal solid waste (MSW). J Biotechnol 101:165–172

    Article  CAS  Google Scholar 

  • Loiseau B, Midoux N, Charpentier JC (1977) Some hydrodynamics and power input data in mechanically agitated gas-liquid contactors. AIChE J 23(6):931–935

    Article  CAS  Google Scholar 

  • Ɓomotowski J, Szplindor A (1999) Nowoczesne systemy oczyszczania ƛciekĂłw. Arkady, Warsaw

    Google Scholar 

  • Nagata S (1975) Mixing. Principles and applications. Kodansha Ltd., Tokyo

    Google Scholar 

  • PaweƂczyk R (1988) BarbotaĆŒ z rĂłwnoczesnym mieszaniem mechanicznym. IV. WpƂyw mocy doprowadzanej doukƂadu. Inz Chem i Proc 3:599–619

    Google Scholar 

  • Pohorecki R (2002) Fluid mechanical problems in biotechnology. Biotechnologia 2:60–77

    Google Scholar 

  • Poncin S, Nguyen C, Midoux N et al (2002) Hydrodynamics and volumetric gas–liquid mass transfer coefficient of a stirred vessel equipped with a gas-inducing impeller. Chem Eng Sci 57:3299–3306

    Article  CAS  Google Scholar 

  • Stręk F (1981) Mieszanie i mieszalniki. WNT, Warszawa

    Google Scholar 

  • Szaferski W, Mitkowski PT (2016) Aeration of liquid-liquid systems with use of various agitators in mixer equipped with membrane diffuser. Chem Eng Technol 39(12):2370–2379

    Article  CAS  Google Scholar 

  • Vermeulen T, Williams GM, Langlosi GE (1955) Interfacial area in liquid-liquid and gas-liquid agitation. Chem Eng Prog 51:85–94

    Google Scholar 

  • Vlček J, Steidl H, Kudrna V (1969) Holdup of dispersed gas fed continuously into a mechanically agitated liquid. Coll Czechoslov Chem Commun 34:373–386

    Article  Google Scholar 

  • Zhang Q, Liu S, Yang C et al (2014) Bioreactor consisting of pressurized aeration and dissolved air flotation for domestic wastewater treatment. Sep Purif Technol 138:186–190

    Article  CAS  Google Scholar 

  • Dyląg M, Talaga J (1991) Hydrodynamika mechanicznego mieszania ukƂadu trĂłjfazowego ciecz–gaz–ciaƂo staƂe. Inz Chem i Proc 12(1):3-25

    Google Scholar 

Download references

Acknowledgements

This work was supported by PUT research grant number 03/32/DSPB/0702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Szaferski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szaferski, W. (2018). Reduction of Energy Consumption in Gas-Liquid Mixture Production Using a Membrane Diffuser and HE-3X Stirrer. In: Ochowiak, M., Woziwodzki, S., Doligalski, M., Mitkowski, P. (eds) Practical Aspects of Chemical Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73978-6_29

Download citation

Publish with us

Policies and ethics