Skip to main content

Probiotics and Prebiotics for the Health of Pigs and Horses

  • Chapter
  • First Online:
Book cover Probiotics and Prebiotics in Animal Health and Food Safety

Abstract

Probiotics and prebiotics are being used for many years as alternatives to antibiotic growth promoters in pigs and poultry. A lot of research has been performed more on probiotics and much less in prebiotics with the purpose to define their effects on both animals and human and to clear their mechanisms of interactions with the body. This chapter will be focused on the practical applications of probiotics and prebiotics in pigs, with reference to some possible mechanisms.

Intestinal tract and its microbiota, as well as its role in physiology and immunity for pigs, will be reviewed. Probiotics and prebiotics, their mode of action, and legal framework, as well as main probiotic strains, either producing lactic acid or not will be shortly presented. Similarly prebiotics will be defined.

The effect of probiotics, prebiotics, and their combination, synbiotics, will be approached through the main target animal categories, as the performance parameters and diseases in each category differ. Therefore, the results of selected trials and experiments will be presented in sows and their offspring, in weaned (nursery) pigs, and in growing-finishing pigs. In addition, a limited number of available studies for probiotics on horses will be reported as there is no much research on this animal species. Some interesting studies on the efficacy of probiotics to raise systemic immunity and to assist against non-intestinal pathogens will be also given. Finally the view of the use of “dead” probiotics will be discussed, as well as the reasons for the high variability of the results among different animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams CA (2010) The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev 23:37–46

    Article  CAS  PubMed  Google Scholar 

  • Aiello SE (1998) Chemotherapeutics introduction. In: Merck veterinary manual, 8th edn. Merck and Co/National Publishing, Whitehouse Station/Philadelphia, pp 1738–1745

    Google Scholar 

  • Alexopoulos C, Karagiannidis A, Kritas SK et al (2001) Field evaluation of a bioregulator, containing live Bacillus cereus spores, on health status and performance of sows and their litters. J Vet Med A 48:137–145

    Article  CAS  Google Scholar 

  • Alexopoulos C, Georgoulakis IE, Tzivara A et al (2004a) Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J Anim Physiol Anim Nutr (Berl) 88:381–392

    Article  CAS  Google Scholar 

  • Alexopoulos C, Georgoulakis I, Tzivara A et al (2004b) Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. J Vet Med A 51:306–312

    Article  CAS  Google Scholar 

  • Anderson DB, McCracken VJ, Aminov RI et al (1999) Gut microbiology and growth-promoting antibiotics in swine. Nutr Abstr Rev Ser B Livestock Feeds Feeding 70:101–188

    Google Scholar 

  • Baum B, Liebler-Tenorio EM, Enss ML et al (2002) Saccharomyces boulardii and Bacillus cereus var Toyoi influence the morphology and the mucins of the intestine of pigs. Z Gastroenterol 40:277–284

    Article  CAS  PubMed  Google Scholar 

  • Bhandari SK, Xu B, Nyachoti CM et al (2008) Evaluation of alternatives to antibiotics using an Escherichia coli K88+ model of piglet diarrhoea: effects on gut microbial ecology. J Anim Sci 86:836–847

    Article  CAS  PubMed  Google Scholar 

  • Böhmer BM, Kramer W, Roth-Maier DA (2006) Dietary probiotic supplementation and resulting effects on performance, health status, and microbial characteristics of primiparous sows. J Anim Physiol Anim Nutr 90:309–315

    Article  CAS  Google Scholar 

  • Bomba A, Nemcova R, Gancarcikova S et al (2002) Improvement of the probiotic effect of microorganisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated acids. Br J Nutr 88:95–99

    Article  CAS  Google Scholar 

  • Bomba A, Jonecova Z, Koscova J et al (2006) The improvement of probiotics efficacy by synergistically acting components of natural origin: a review. Biologia 61:729–734

    Article  Google Scholar 

  • Bontempo V, Di Giancamillo A, Savoini G et al (2006) Live yeast dietary supplementation acts upon intestinal morphofunctional aspects and growth in weanling piglets. Anim Feed Sci Technol 129:224–236

    Article  Google Scholar 

  • Boyle RJ, Robins-Browne RM, Tang MLK (2006) Probiotic use in clinical practice: what are the risks? Am J Clin Nutr 83:1256–1264

    Article  CAS  PubMed  Google Scholar 

  • Boyle AG, Magdesian KG, Durando MM et al (2013) Saccharomyces boulardii viability and efficacy in horses with antimicrobial- induced diarrhea. Vet Rec 172:128

    Article  CAS  PubMed  Google Scholar 

  • Breves G, Szentkuti L, Schroder B (2001) Effects of oligosaccharides on functional parameters of the intestinal tract of growing pigs. Dtsch Tierarztl Wochenschr 108(6):246–248

    CAS  PubMed  Google Scholar 

  • Campbell JM, Crenshaw JD, Polo J (2013) The biological stress of early weaned piglets. J Anim Sci Biotechnol 4(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Cangemi de Gutierrez R, Santos V, Nader-Macias ME (2001) Protective effect of intranasally inoculated Lactobacillus fermentum against Streptococcus pneumoniae challenge on the mouse respiratory tract. FEMS Immunol Med Microbiol 31:187–195

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Hao H, Xie S et al (2014) Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 5:217. https://doi.org/10.3389/fmicb201400217

    Article  PubMed  PubMed Central  Google Scholar 

  • Choct M (2009) Managing gut health through nutrition. Br Poultry Sci 50:9–15

    Article  CAS  Google Scholar 

  • Collado MC, Grzeskowiak C, Salminen S (2007) Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol 55:260–265

    Article  CAS  PubMed  Google Scholar 

  • Corcionivoschi N, Drinceanu D, Pop IM et al (2010) The effect of probiotics on animal health. Anim Sci Biotechnol 43(1):35–41

    Google Scholar 

  • Davis ME, Parrott T, Brown DC et al (2008) Effect of a Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. J Anim Sci 86:1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Desrochers AM, Dolente BA, Roy MF et al (2005) Efficacy of Saccharomyces boulardii for treatment of horses with acute enterocolitis. J Am Vet Med Assoc 227:954–959

    Article  PubMed  Google Scholar 

  • Dewey CE, Cox BD, Straw BE et al (1999) Use of antimicrobials in swine feeds in the United States. Swine Health Prod 7(1):19–25

    Google Scholar 

  • Di Giancamillo A, Vitari F, Savoini G et al (2008) Effects of orally administered probiotic Pediococcus acidilactici on the small and large intestine of weaning piglets. A qualitative and quantitative micro-anatomical study. Histol Histopathol 23:651–664

    PubMed  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle ME (2001) Alternatives to antibiotic use for growth promotion in animal husbandry. Food Research Institute Briefings, University of Winsconsin, Madison, April issue

    Google Scholar 

  • Dritz SS, Tokach MD, Goodband RD et al (2002) Effects of administration of antimicrobials in feed on growth rate and feed efficiency of pigs in multisite production systems. J Am Vet Med Assoc 220:1690–1169

    Article  CAS  PubMed  Google Scholar 

  • Duerkop BA, Vaishnava S, Hooper LV (2009) Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31:368–376

    Article  CAS  PubMed  Google Scholar 

  • Dufresne L, 1998: Alimentary tract disorders of growing pigs. In: Proceedings of 15th International Pig Veterinary Society Congress, Birmingham, England, 5–9 July 1998, vol 1, pp 71–77

    Google Scholar 

  • English P, Smith W, McLean A (1984) Replacement policy. In: English P, Smith W, McLean A (eds) The sow: improving her efficiency. Farming Press, Ipswich, p 83

    Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  PubMed  Google Scholar 

  • Gareau MG, Wine E, Sherman PM (2009) Early life stress induces both acute and chronic colonic barrier dysfunction. NeoReviews 10:191–197

    Article  Google Scholar 

  • Giannakopoulos CG, Kyriakis SC, Saoulidis K et al (2001) The effect of salinomycin on health status and performance of sows and their litters: a dose titration study. J Vet Med A 48:257–265

    Article  CAS  Google Scholar 

  • Gill HS (2003) Probiotics to enhance anti-infective defences in the gastro-intestinal tract. Best Pract Res Clin Gastroenterol 17:755–773

    Article  CAS  PubMed  Google Scholar 

  • Gluck U, Gebbers JO (2003) Ingested probiotics reduced nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, beta-hemolytic streptococci). Am J Clin Nutr 77:517–520

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Kiyoshima J, Shida K et al (2001) Effect of intranasal administration of Lactobacillus casei Shirota on influenza virus infection of upper respiratory tract in mice. Clin Diagn Lab Immunol 8:593–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin LZ, Ho YW, Abdulla N et al (2000) Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult Sci 79:886–891

    Article  CAS  PubMed  Google Scholar 

  • Jurgens MH, Rikabi RA, Zimmerman DR (1997) The effect of dietary active dry yeast supplement on performance of sows during gestation-lactation and their pigs. J Anim Sci 75:593–597

    Article  CAS  PubMed  Google Scholar 

  • Kantas DV, Vassilopoulos V, Kyriakis SC et al (1998) A dose titration study on the effect of virginiamycin on gilt/sow and piglet performance. J Vet Med A 45:525–533

    Article  CAS  Google Scholar 

  • Kataria J, Li N, Wynn JL et al (2009) Probiotic microbes: do they need to be alive to be beneficial? Nutr Rev 67(9):546–550

    Article  PubMed  Google Scholar 

  • Kenny M, Smidt H, Mengheri E et al (2011) Probiotics – do they have a role in the pig industry? Animal 5(3):462–470

    Article  CAS  PubMed  Google Scholar 

  • Koenig JE, Spor A, Scalfone N et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578–4585

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov SR, Smidt H, Akkermans ADL et al (2008) Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol Ecol 66:599–607

    Article  CAS  PubMed  Google Scholar 

  • Kovacs-Zomborszky M, Kreizinger F, Gombos S et al (1994) Data on the effects the probiotics “Lacto Sacc”. Acta Vet Hung 42(1):3–14

    CAS  PubMed  Google Scholar 

  • Kozasa M (1986) Toyocerin (Bacillus toyoi) as growth promoter for animal feeding. Migrobiol Aliments Nutr 4:121–124

    Google Scholar 

  • Kritas SK, Morrison RB (2003) A critical review of feeding probiotics to pigs. In: Proceedings of AD Leman swine conference, Saint Paul, 13–16 Sept, vol 30, pp 252–255

    Google Scholar 

  • Kritas SK, Morrison RB (2005) Evaluation of probiotics as a substitute for antibiotics in a large pig nursery. Vet Rec 156:447–448

    Article  CAS  PubMed  Google Scholar 

  • Kritas SK, Morrison RB (2007) Effect of orally administered Lactobacillus casei on Porcine Reproductive and Respiratory Syndrome (PRRS) virus vaccination in pigs. Vet Microbiol 119(2–4):248–255

    Article  CAS  PubMed  Google Scholar 

  • Kritas SK, Marubashi T, Filioussis G et al (2013) Field evaluation of Calsporin, a probiotic based on viable spores of Bacillus subtilis C-3102: health, performance, and carcass quality of grower-finisher pigs. In: The sixth Asian Pig Veterinary Society Congress, Ho Chi Minh City, Vietnam, 23–25 Sept 2013

    Google Scholar 

  • Kritas SK, Marubashi T, Filioussis G et al (2015) Reproductive performance of sows was improved by administration of a sporing bacillary probiotic (Bacillus subtilis C-3102). J Anim Sci 93(1):405–413

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis SC, Vassilopoulos V, Demade I et al (1992) The effect of virginiamycin on sow and litter performance. Anim Prod 55:431–436

    Article  CAS  Google Scholar 

  • Kyriakis SC, Sarris K, Kritas SK, Saoulidis K, Tsinas AC, Tsiloyiannis VK (1995) The effect of Salinomycin on the control of Clostridium perfringens type-A infection in growing pigs. J Vet Med B 42:355–359

    Article  CAS  Google Scholar 

  • Kyriakis SC, Tsiloyiannis VK, Lekkas S et al (1997) The efficacy of enrofloxacin in-feed medication, by applying different programmes for the control of post weaning diarrhoea syndrome of piglets. J Vet Med B 44:513–521

    Article  CAS  Google Scholar 

  • Kyriakis SC, Tsiloyiannis VK, Vlemmas J et al (1999) The effect of probiotic LSP 122 on the control of post-weaning diarrhoea syndrome of piglets. Res Vet Sci 67:223–228

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis SC, Georgoulakis I, Spais A et al (2003) Evaluation of Toyocerin, a probiotic containing Bacillus toyoi spores, on health status and productivity of weaned, growing and finishing pigs. Asian Aust J Anim Sci 16(9):1326–1331

    Article  Google Scholar 

  • Lessard M, Dupuis M, Gagnon N et al (2009) Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J Anim Sci 87:922–934

    Article  CAS  PubMed  Google Scholar 

  • Mallo JJ, Rioperez J, Honrubia P (2010) The addition of Enterococcus faecium to diet improves piglet’s intestinal microbiota and performance. Livest Sci 26:243–256

    Google Scholar 

  • Marubashi T, Gracia MI, Vilà B et al (2012) The efficacy of the probiotic feed additive Calsporin (Bacillus subtilis C-3102) in weaned piglets: combined analysis of four different studies. J Appl Anim Nutr 1(e2):1–5

    Google Scholar 

  • Mathew AG, Chattin SE, Robbins CM et al (1998) Effects of a direct-fed yeast culture on enteric microbial populations, fermentations acids, and performance of weanling pigs. J Anim Sci 76:2138–2145

    Article  CAS  PubMed  Google Scholar 

  • Mazmanian SK, Round JL, Kasper D (2008) A microbial symbiosis factor prevents inflammatory disease. Nature 453:620–625

    Article  CAS  PubMed  Google Scholar 

  • Meng QW, Yan L, Ao X et al (2010) Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. J Anim Sci 88(10):3320–3326

    Article  CAS  PubMed  Google Scholar 

  • Modesto M, D’Aimmo MR, Stefanini I (2009) A novel strategy to select Bifidobacterium strains and prebiotics as natural growth promoters in newly weaned pigs. Livest Sci 122:248–258

    Article  Google Scholar 

  • Murali SE, Kavitha BTVV, JGI S (2010) Probiotics as potential therapies in human gastrointestinal health. Int J Adv Pharm Sci 1:96–110

    Google Scholar 

  • Nemcova R, Bomba A, Gancarcikova S et al (1999) Study of the effect of Lactobacillus paracasei and fructooligosaccharides on the faecal microflora in weanling piglets. Berl Munch Tierarztl Wochenschr 112:225–228

    CAS  PubMed  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289

    Article  CAS  PubMed  Google Scholar 

  • Parraga ME, Spier SJ, Thurmond M et al (1997) clinical trial of probiotic administration for prevention of Salmonella shedding in the postoperative period in horses with colic. J Vet Intern Med 11:36–41

    Article  CAS  PubMed  Google Scholar 

  • Perdigon G, Alvarez S, Medina M et al (1999) Influence of the oral administration of lactic acid bacteria on producing cells associated to bronchus. Int J Immunopathol Pharmacol 12:97–102

    CAS  PubMed  Google Scholar 

  • Perdigon G, Fuller R, Raya R (2001) Lactic acid bacteria and their effect on the immune system. Curr Issues Intest Microbiol 2(1):27–42

    CAS  PubMed  Google Scholar 

  • Piva A, Casadei G, Gatta PP et al (2005) Effect of lactitol, lactic acid bacteria, or their combinations (synbiotic) on intestinal proteolysis in vitro, and on feed efficiency in weaned pigs. Can J Anim Sci 85:345–353

    Article  CAS  Google Scholar 

  • Prieto ML, O’Sullivan L, Tan SP et al (2014) Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs. PLoS One 9(2):e88599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robertson JL, Tournout J (1994) Probiotic concept applied to the sow-piglet couple. In: Chulalongkorn University, Faculty of Veterinary Science, Bangkok (ed) Proceedings of 13th IPVS Congress Chulalongkorn University, Faculty of Veterinary Science, Bangkok, Thailand, p 263

    Google Scholar 

  • Rohrbach BW, Sheerin PC, Cantrell CK et al (2007) Effect of adjunctive treatment with intravenously administered Propionibacterium acnes on reproductive performance in mares with persistent endometritis. J Am Vet Med Assoc 231(1):107–113

    Article  PubMed  Google Scholar 

  • Salminen S, Isolauri E, Salminen E (1996) Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek 70:347–358

    Article  CAS  PubMed  Google Scholar 

  • Salzman NH, Ghosh D, Huttner KM et al (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–526

    Article  CAS  PubMed  Google Scholar 

  • Schachtschneider KM, Yeoman CJ, Isaacson RE et al (2013) Modulation of systemic immune responses through commensal gastrointestinal microbiota. PLoS One 8(1):e53969. https://doi.org/10.1371/journalpone0053969. Epub 2013 Jan 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharek L, Altherr BJ, Tölke C et al (2007a) Influence of the probiotic Bacillus cereus var toyoi on the intestinal immunity of piglets. Vet Immunol Immunopathol 120(3–4):136–147

    Article  CAS  PubMed  Google Scholar 

  • Scharek L, Guth J, Filter M et al (2007b) Impact of the probiotic bacteria Enterococcus faecium NCIMB 10415 (SF68) and Bacillus cereus var toyoi NCIMB 40112 on the development of serum IgG and faecal IgA of sows and their piglets. Arch Anim Nutr 61(4):223–234

    Article  CAS  PubMed  Google Scholar 

  • Scharek-Tedin L, Pieper R, Vahjen W (2013) Bacillus cereus var Toyoi modulates the immune reaction and reduces the occurrence of diarrhea in piglets challenged with Salmonella Typhimurium DT104. J Anim Sci 91(12):5696–5704

    Article  CAS  PubMed  Google Scholar 

  • Scharek-Tedin L, Kreuzer-Redmer S, Twardziok SO (2015) Probiotic treatment decreases the number of CD14-expressing cells in porcine milk which correlates with several intestinal immune parameters in the piglets. Front Immunol 6:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schierack P, Wieler LH, Taras D (2007) Bacillus cereus var toyoi enhanced systemic immune response in piglets. Vet Immunol Immunopathol 118(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Schoster A, Weese JS, Guardabassi L (2014) Probiotic use in horses - what is the evidence for their clinical efficacy? J Vet Intern Med 28(6):1640–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoster A, Staempfli HR, Abrahams M et al (2015) Effect of a probiotic on prevention of diarrhea and Clostridium difficile and Clostridium perfringens shedding in foals. J Vet Intern Med 29(3):925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoster A, Guardabassi L, Staempfli HR et al (2016) The longitudinal effect of a multi-strain probiotic on the intestinal bacterial microbiota of neonatal foals. Equine Vet J 48(6):689–696

    Article  CAS  PubMed  Google Scholar 

  • Shim SB, Verstegen WA, Kim IH et al (2005) Effects of feeding antibiotic-free creep feed supplemented with oligofructose, probiotics or synbiotics to suckling piglets increases the preweaning weight gain and composition of intestinal microbiota. Arch Anim Nutr 59:419–427

    Article  CAS  PubMed  Google Scholar 

  • Shu Q, Qu F, Gill HS (2001) Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J Pediatr Gastroenterol Nutr 33(2):171–177

    Article  CAS  PubMed  Google Scholar 

  • Si JM, Yu YC, Fan YJ et al (2004) Intestinal microecology and quality of life in irritable bowel syndrome patients. World J Gastroenterol 10:1802–1805

    Article  PubMed  PubMed Central  Google Scholar 

  • Siggers RH, Siggers J, Boye M et al (2008) Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. J Nutr 138(8):1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Snel J, Harmsen HJM, Van der Wielen PWJJ et al (2002) Dietary strategies to influence the gastro-intestinal microflora of young animals, and its potential to improve intestinal health. In: Blok MC, Vahl HA, De Lange L, Van de Braak AE, Hemke G, Hessing M (eds) Nutrition and health of the gastrointestinal tract. Wageningen Academic, The Netherlands, pp 37–69

    Google Scholar 

  • Spencer KJ, Touchette KJ, Liu H et al (1997) Effect of spray-dried plasma and fructooligosaccharide on nursery performance and small intestinal morphology of weaned pigs. J Anim Sci 75(Suppl 1):199

    Google Scholar 

  • Taras D, Vahjen W, Macha M et al (2005) Response of performance characteristics and fecal consistency to long-lasting supplementation with the probiotic strain Bacillus cereus var toyoi to sows and piglets. Arch Anim Nutr 59:405–417

    Article  PubMed  Google Scholar 

  • Taras D, Vahjen W, Macha M et al (2006) Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. J Anim Sci 84:608–617

    Article  CAS  PubMed  Google Scholar 

  • Timmerman HM, Koning CJM, Mulder L et al (2004) Monostrain, multistrain and multispecies probiotics – a comparison of functionality and efficacy. Int J Food Microbiol 96:219–233

    Article  CAS  PubMed  Google Scholar 

  • Timmerman HM, Veldman A, van den Elsen E et al (2006) Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poult Sci 85(8):1383–1388

    Article  CAS  PubMed  Google Scholar 

  • Tizard IR (2013) Veterinary immunology, 9th edn. Elsevier, Amsterdam, pp 204–257

    Google Scholar 

  • Trevisi P, Colombo M, Priori D et al (2015) Comparison of three patterns of feed supplementation with live Saccharomyces cerevisiae yeast on postweaning diarrhea, health status, and blood metabolic profile of susceptible weaning pigs orally challenged with Escherichia coli F4ac. J Anim Sci 93(5):2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara T, Tsuruta T, Nakanishi N et al (2013) The preventive effect of Bacillus subtilis strain DB9011 against experimental infection with enterotoxemic Escherichia coli in weaning piglets. Anim Sci J 84(4):316–321

    Article  PubMed  Google Scholar 

  • Van Heugten E, Funderburke DW, Dorton KL (2003) Growth performance, nutrient digestibility, and fecal microflora in weanling pigs fed live yeast. J Anim Sci 81:1004–1012

    Article  PubMed  Google Scholar 

  • Visek WJ (1978) The mode of growth promotion by antibiotics. J Anim Sci 46:1447–1469

    Article  Google Scholar 

  • Vondruskova H, Slamova R, Trckova M et al (2010) Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Vet Med 55(5):199–224

    Article  CAS  Google Scholar 

  • Walsh MC, Gardiner GE, Hart OM et al (2008) Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiol Ecol 64:317–327

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Yu H, Gao X et al (2009) Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E coli challenged piglets. Antonie Van Leeuwenhoek 96:89–98

    Article  CAS  PubMed  Google Scholar 

  • Wang AN, Cai CJ, Zeng XF et al (2013) Dietary supplementation with Lactobacillus fermentum I5007 improves the anti-oxidative activity of weanling piglets challenged with diquat. J Appl Microbiol 114:1582–1591

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Burwinkel M, Chai W et al (2014) Dietary Enterococcus faecium NCIMB 10415 and zinc oxide stimulate immune reactions to trivalent influenza vaccination in pigs but do not affect virological response upon challenge infection. PLoS One 9(1):e87007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whittemore C (1998) Optimisation of feed supply to growing pigs and breeding sows. In: Whittemore C (ed) The science and practice of pig production. Blackwell Sciences, Oxford, p 421

    Google Scholar 

  • Williams BA, Verstegen MWA, Tamminga S (2001) Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev 14:207–227

    Article  CAS  PubMed  Google Scholar 

  • von Wright A (2005) Regulating the safety of probiotics – the European approach. Curr Pharm Des 11:17–23

    Article  Google Scholar 

  • Yasui H, Mike A, Ohwaki M (1989) Immunogenicity of Bifidobacterium breve and change in antibody production in peyer’s patches after oral administration. J Dairy Sci 72:30–35

    Article  CAS  PubMed  Google Scholar 

  • Yu HF, Wang AN, Li XJ et al (2008) Effect of viable Lactobacillus fermentum on the growth performance, nutrient digestibility and immunity of weaned pigs. J Anim Feed Sci 17:61–69

    Article  Google Scholar 

  • Zhang AW, Lee BD, Lee SK et al (2005) Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poult Sci 84(7):1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Zoetendal EG, Collier CT, Koike S et al (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyridon K. Kritas D.V.M., M.H.M., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kritas, S.K. (2018). Probiotics and Prebiotics for the Health of Pigs and Horses. In: Di Gioia, D., Biavati, B. (eds) Probiotics and Prebiotics in Animal Health and Food Safety. Springer, Cham. https://doi.org/10.1007/978-3-319-71950-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71950-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71948-1

  • Online ISBN: 978-3-319-71950-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics