Skip to main content

Future Prospects for Respiratory Sound Research

  • Chapter
  • First Online:
Breath Sounds

Abstract

Respiratory sounds remain one of the most valuable information for diagnosing and monitoring respiratory diseases in children and adults, especially since subjectivity of auscultation has been removed using computerized techniques. Nevertheless, their wide implementation in clinical practice needs further research in several areas. The future prospects for respiratory sound research are proposed to be organized in three main areas: basic and clinical research, equipment, and knowledge translation. Basic and clinical research is deemed necessary to establish the origin, characteristics, and clinical meaning of respiratory sounds in different respiratory diseases, across all ages and in different settings. There is also much room for technological advances by developing hand-held, user-friendly, and low-cost equipment with machine-learning algorithms that may provide automatic analysis of the main respiratory sound parameters. This information, if integrated in electronic health records, could contribute for robust clinical decision support systems, which could then be integrated in wearables to obtain data at bedside or remotely and empower not only health professionals but also patients, caregivers, and citizens for self-management of health and well-being. Finally, several systematic reviews and consensus involving different stakeholders on terminology, acquisition, analysis, and interpretation of respiratory sounds are needed to start a knowledge translation unit. This chapter will provide a comprehensive overview of the different areas of respiratory sounds where future research would be valuable to contribute to far-reaching positive changes in managing respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop PJ (1981) Reception of the stethoscope and Laënnec’s book. Thorax 36(7):487–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bauserman M, Hailey C, Gado J, Lokangaka A, Williams J, Richards-Kortum R, Tshefu A, Bose C (2015) Determining the utility and durability of medical equipment donated to a rural clinic in a low-income country. Int Health 7(4):262–265

    Article  PubMed  Google Scholar 

  3. Ellington LE, Gilman RH, Tielsch JM, Steinhoff M, Figueroa D, Rodriguez S, Caffo B, Tracey B, Elhilali M, West J, Checkley W (2012) Computerised lung sound analysis to improve the specificity of paediatric pneumonia diagnosis in resource-poor settings: protocol and methods for an observational study. BMJ Open 2(1):e000506

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bohadana A, Izbicki G, Kraman SS (2014) Fundamentals of lung auscultation. N Engl J Med 370(8):744–751

    Article  CAS  PubMed  Google Scholar 

  5. Moussavi ZK, Leopando MT, Pasterkamp H, Rempel G (2000) Computerized acoustical respiratory phase detection without airflow measurement. Med Biol Eng Comput 38(2):198–203

    Article  CAS  PubMed  Google Scholar 

  6. Kandaswamy A, Kumar CS, Ramanathan RP, Jayaraman S, Malmurugan N (2004) Neural classification of lung sounds using wavelet coefficients. Comput Biol Med 34(6):523–537

    Article  CAS  PubMed  Google Scholar 

  7. Polat H, Guler I (2004) A simple computer-based measurement and analysis system of pulmonary auscultation sounds. J Med Syst 28(6):665–672

    Article  PubMed  Google Scholar 

  8. Gavriely N, Nissan M, Cugell D, Rubin A (1994) Respiratory health screening using pulmonary function tests and lung sound analysis. Eur Respir J 7(1):35–42

    Article  CAS  PubMed  Google Scholar 

  9. Pasterkamp H, Powell RE, Sanchez I (1996) Lung sound spectra at standardized air flow in normal infants, children, and adults. Am J Resp Crit Care 154(2):424–430

    Article  CAS  Google Scholar 

  10. Oliveira A, Marques A (2014) Respiratory sounds in healthy people: a systematic review. Respir Med 108(4):550–570

    Article  PubMed  Google Scholar 

  11. Gurung A, Scrafford CG, Tielsch JM, Levine OS, Check W (2011) Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis. Respir Med 105(9):1396–1403

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jácome C, Marques A (2015) Computerized respiratory sounds in patients with COPD: a systematic review. COPD 12(1):104–112

    Article  PubMed  Google Scholar 

  13. Murphy RLH (2008) In defense of the stethoscope. Respir Care 53(3):355–369

    PubMed  Google Scholar 

  14. Bettencourt PE, Del Bono EA, Spiegelman D, Hertzmark E, Murphy RL Jr (1994) Clinical utility of chest auscultation in common pulmonary diseases. Am J Respir Crit Care Med 150(5 Pt 1):1291–1297

    Article  CAS  PubMed  Google Scholar 

  15. Jácome C, Oliveira A, Marques A (2015) Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD. Clin Respir J 11(5):612–620

    Article  PubMed  Google Scholar 

  16. Marques A, Oliveira A, Jácome C (2014) Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: a systematic review. Respir Care 59(5):765–776

    Article  PubMed  Google Scholar 

  17. Sovijärvi A, Dalmasso F, Vanderschoot J, Malmberg L, Righini G, Stoneman S (2000) Definition of terms for applications of respiratory sounds. Eur Respir Rev 10(77):597–610

    Google Scholar 

  18. Sánchez Morillo D, Astorga Moreno S, Fernández Granero MÁ, León Jiménez A (2013) Computerized analysis of respiratory sounds during COPD exacerbations. Comput Biol Med 43(7):914–921

    Article  PubMed  Google Scholar 

  19. Pinho C, Oliveira A, Oliveira D, Dinis J, Marques A (2014) RIBS@UA: interface to collect and store respiratory data, a preliminary study. Comput Biol Med 47:44–57

    Article  PubMed  Google Scholar 

  20. Taplidou SA, Hadjileontiadis LJ (2007) Wheeze detection based on time-frequency analysis of breath sounds. Comput Biol Med 37(8):1073–1083

    Article  PubMed  Google Scholar 

  21. Serbes G, Sakar CO, Kahya YP, Aydin N (2013) Pulmonary crackle detection using time–frequency and time–scale analysis. Digital Signal Process 23(3):1012–1021

    Article  Google Scholar 

  22. Benedetto G, Dalmasso F, Guarene MM (1983) A method for the acoustical analysis of respiratory crackles in cryptogenic fibrosing alveolitis. IEEE T Bio-Med Eng 30(9):620–623

    Article  CAS  Google Scholar 

  23. Ono M, Arakawa K, Mori M, Sugimoto T, Harashima H (1989) Separation of fine crackles from vesicular sounds by a nonlinear digital-filter. IEEE T Bio-Med Eng 36(2):286–291

    Article  CAS  Google Scholar 

  24. Cátia P, Oliveira A, Jácome C, Rodrigues JM, Marques A (2016) Integrated approach for automatic crackle detection based on fractal dimension and box filtering. IJRQEH 5(4):34–50

    Google Scholar 

  25. Fredberg JJ, Holford SK (1983) Discrete lung sounds: crackles (rales) as stress-relaxation quadrupoles. J Acoust Soc Am 73(3):1036–1046

    Article  CAS  PubMed  Google Scholar 

  26. Gavriely N, Kelly KB, Grotberg JB, Loring SH (1985) Forced expiratory wheezes are a manifestation of airway flow limitation. J Appl Physiol 62(6):2398–2403

    Article  Google Scholar 

  27. Gavriely N, Shee TR, Cugell DW, Grotberg JB (1985) Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes. J Appl Physiol 66(5):2251–2261

    Article  Google Scholar 

  28. Grotberg JB, Gavriely N (1989) Flutter in collapsible tubes: a theoretical model of wheezes. J Appl Physiol 66(5):2262–2273

    Article  CAS  PubMed  Google Scholar 

  29. Vyshedskiy A, Alhashem RM, Paciej R, Ebril M, Rudman I, Fredberg JJ, Murphy R (2009) Mechanism of inspiratory and expiratory crackles. Chest 135(1):156–164

    Article  PubMed  Google Scholar 

  30. Forgacs P (1967) Crackles and wheezes. Lancet 290(7508):203–205

    Article  Google Scholar 

  31. Nath AR, Capel LH (1974) Inspiratory crackles – early and late. Thorax 29(2):223–227

    Article  PubMed Central  Google Scholar 

  32. Nath AR, Capel LH (1974) Inspiratory crackles and mechanical events of breathing. Thorax 29(6):695–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Forgacs P (1978) Lung sounds. Bailliere Tindall, London

    Google Scholar 

  34. Forgacs P (1978) The functional basis of pulmonary sounds. Chest 73(3):399–405

    Article  CAS  PubMed  Google Scholar 

  35. Grotberg JB, Davis SH (1980) Fluid-dynamic flapping of a collapsible channel: Sound generation and flow limitation. J Biomech 13(3):219–230

    Article  CAS  PubMed  Google Scholar 

  36. Sovijärvi A, Vanderschoot J, Earis J (2000) Standardization of computerized respiratory sound analysis. Eur Respir Rev 10(77):585

    Google Scholar 

  37. Pasterkamp H, Kraman SS, Wodicka GR (1997) Respiratory sounds: advances beyond the stethoscope. Am J Respir Crit Care 156:974–987

    Article  CAS  Google Scholar 

  38. Earis JE, BMG C (2000) Future perspectives for respiratory sound research. Eur Respir Rev 10(77):641–646

    Google Scholar 

  39. Gavriely N, Nissan M, Rubin A-H, Cugell DW (1995) Spectral characteristics of chest wall breath sounds in normal subjects. Thorax 50:1292–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Charbonneau G, Sudraud M, Soufflet G (1987) Method for the evaluation of flow rate from pulmonary sounds. Bull Eur Physiopathol Respir 23(3):265–270

    CAS  PubMed  Google Scholar 

  41. Patel S, Lu S, Doerschuk PC, Wodicka GR (1995) Sonic phase delay from trachea to chest wall: spatial and inhaled gas dependency. Med Biol Eng Comput 33(4):571–574

    Article  CAS  PubMed  Google Scholar 

  42. Anderson K, Aitken S, Carter R, MacLeod JE, Moran F (1990) Variation of breath sound and airway caliber induced by histamine challenge. Am Rev Respir Dis 141(5 Pt 1):1147–1150

    Article  CAS  PubMed  Google Scholar 

  43. Malmberg LP, Sovijarvi ARA, Paajanen E, Piirila P, Haahtela T, Katila T (1994) Changes in frequency spectra of breath souds during histaminic challenge test in adult asthmatics and healthy control subjects. Chest 105(1):122–132

    Article  CAS  PubMed  Google Scholar 

  44. Pasterkamp H, Consunji-Araneta R, Oh Y, Holbrow J (1997) Chest surface mapping of lung sounds during methacholine challenge. Pediatr Pulmonol 23(1):21–30

    Article  CAS  PubMed  Google Scholar 

  45. Alshaer H, Fernie GR, Maki E, Bradley TD (2013) Validation of an automated algorithm for detecting apneas and hypopneas by acoustic analysis of breath sounds. Sleep Med 14(6):562–571

    Article  PubMed  Google Scholar 

  46. Cortes S, Jane R, Fiz JA, Morera J (2005) Monitoring of wheeze duration during spontaneous respiration in asthmatic patients. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 6:6141–6144

    CAS  Google Scholar 

  47. Eising JB, Uiterwaal CS, van der Ent CK (2014) Nocturnal wheeze measurement in preschool children. Pediatr Pulmonol 49(3):257–262

    Article  PubMed  Google Scholar 

  48. Bentur L, Beck R, Berkowitz D, Hasanin J, Berger I, Elias N, Gavriely N (2004) Adenosine bronchial provocation with computerized wheeze detection in young infants with prolonged cough: correlation with long-term follow-up. Chest 126(4):1060–1065

    Article  PubMed  Google Scholar 

  49. Faber TE, Kamps AW, Sjoerdsma MH, Vermeulen S, Veeger NJ, Bont LJ (2015) Computerized assessment of wheezing in children with respiratory syncytial virus bronchiolitis before and after hypertonic saline nebulization. Respir Care 60(9):1252–1256

    Article  PubMed  Google Scholar 

  50. Beck R, Elias N, Shoval S, Tov N, Talmon G, Godfrey S, Bentur L (2007) Computerized acoustic assessment of treatment efficacy of nebulized epinephrine and albuterol in RSV bronchiolitis. BMC Pediatr 7(22):1–6

    Google Scholar 

  51. Sanchez I, Powell RE, Pasterkamp H (1993) Wheezing and airflow obstruction during methacholine challenge in children with cystic fibrosis and in normal children. Am Rev Respir Dis 147(3):705–709

    Article  CAS  PubMed  Google Scholar 

  52. Epler GR, Carrington CB, Gaensler EA (1978) Crackles (rales) in the interstitial pulmonary diseases. Chest 73(3):333–339

    Article  CAS  PubMed  Google Scholar 

  53. Piirila P, Sovijarvi ARA, Kaisla T, Rajala H-M, Katila T (1991) Crackles in patients with fibrosing alveolitis, bronchiectasis, COPD, and heart failure. Chest 99(5):1076–1083

    Article  CAS  PubMed  Google Scholar 

  54. Piirila P (1992) Changes in crackle characteristics during the clinical course of pneumonia. Chest 102(1):176–183

    Article  CAS  PubMed  Google Scholar 

  55. Bohadana AB (2000) Lung sounds in asthma and chronic obstructive pulmonary disease. Monaldi Arch Chest Dis 55(6):484–487

    CAS  PubMed  Google Scholar 

  56. Piirila P, Lehtola H, Zitting A, Kivisaari L, Koskinen H, Luukkonen R, Salo SP, Vehmas T, Nordman H, Sovijarvi ARA (2000) Lung sounds in asbestos induced pulmonary disorders. Eur Respir J 16:901–908

    Article  CAS  PubMed  Google Scholar 

  57. Cottin V, Cordier JF (2012) Velcro crackles: the key for early diagnosis of idiopathic pulmonary fibrosis? Eur Respir J 40(3):519–521

    Article  PubMed  Google Scholar 

  58. Sellares J, Hernandez-Gonzalez F, Lucena CM, Paradela M, Brito-Zeron P, Prieto-Gonzalez S, Benegas M, Cuerpo S, Espinosa G, Ramirez J, Sanchez M, Xaubet A (2016) Auscultation of Velcro crackles is associated with usual interstitial pneumonia. Medicine 95(5):2573

    Article  CAS  Google Scholar 

  59. Sun X, Cheetham BM, Earis JE (1998) Real time analysis of lung sounds. Technol Health Care 6(1):3–10

    CAS  PubMed  Google Scholar 

  60. Jiang H, Chen J, Cao J, Mu L, Hu Z, He J (2015) Evaluation of vibration response imaging (VRI) technique and difference in VRI indices among non-smokers, active smokers and passive smokers. Med Sci Monit 21:2170–2177

    Article  PubMed  PubMed Central  Google Scholar 

  61. Abbas A, Fahim A (2010) An automated computerized auscultation and diagnostic system for pulmonary diseases. J Med Syst 34(6):1149–1155

    Article  PubMed  Google Scholar 

  62. Foche-Perez I, Ramirez-Payba R, Hirigoyen-Emparanza G, Balducci-Gonzalez F, Simo-Reigadas FJ, Seoane-Pascual J, Corral-Penafiel J, Martinez-Fernandez A (2012) An open real-time tele-stethoscopy system. Biomed Eng Online 11(57):11–57

    Google Scholar 

  63. Palaniappan R, Sundaraj K, Sundaraj S, Huliraj N, Revadi SS (2015) A telemedicine tool to detect pulmonary pathology using computerized pulmonary acoustic signal analysis. Appl Soft Comput 37:952–959

    Article  Google Scholar 

  64. Yu C, Tsai TH, Huang SI, Lin CW (2013) Soft stethoscope for detecting asthma wheeze in young children. Sensors 13(6):7399–7413

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chamberlain D, Mofor J, Fletcher R, Kodgule R (2015) Mobile stethoscope and signal processing algorithms for pulmonary screening and diagnostics. In: Global humanitarian technology conference (GHTC), 2015 IEEE, 8–11 Oct 2015. pp 385–392. doi:10.1109/GHTC.2015.7344001

    Google Scholar 

  66. Africa & Middle East Telecom-Week (2014) Africa & Middle East mobile factbook 2Q 2014. http://www.mikekujawski.ca/2009/03/16/latest-mobile-phone-statistics-from-africa-and-what-this-means/

  67. Palaniappan R, Sundaraj K, Sundaraj S (2014) Artificial intelligence techniques used in respiratory sound analysis—a systematic review. Biomed Tech 59(1):7–18

    Article  Google Scholar 

  68. Guler EC, Sankur B, Kahya YP, Raudys S (2003) Two-stage classification of respiratory sound patterns. Comput Biol Med 35(1):67–83

    Article  Google Scholar 

  69. Mayorga P, Druzgalski C, Gonzalez OH, Lopez HS (2012) Modified classification of normal lung sounds applying quantile vectors. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 5(10):6346908

    Google Scholar 

  70. Vannuccini L, Rossi M, Pasquali G (1998) A new method to detect crackles in respiratory sounds. Technol Health Care 6(1):75–79

    CAS  PubMed  Google Scholar 

  71. Lu X, Bahoura M (2008) An integrated automated system for crackles extraction and classification. Biomed Signal Process Control 3(3):244–254

    Article  Google Scholar 

  72. Charleston-Villalobos S, Dorantes-Mendez G, Gonzalez-Camarena R, Chi-Lem G, Carrillo JG, Aljama-Corrales T (2011) Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques. Med Biol Eng Comput 49(1):15–24

    Article  PubMed  Google Scholar 

  73. Hadjileontiadis LJ, Panas SM (1997) Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter. IEEE Trans Biomed Eng 44(12):1269–1281

    Article  CAS  PubMed  Google Scholar 

  74. Waris M, Helisto P, Haltsonen S, Saarinen A, Sovijärvi A (1998) A new method for automatic wheeze detection. Technol Health Care 6(1):33–40

    CAS  PubMed  Google Scholar 

  75. Homs-Corbera A, Jane R, Fiz JA, Morera J (2000) Algorithm for time-frequency detection and analysis of wheezes. Proceedings of the 22nd annual international conference of the IEEE engineering in medicine and biology society, Vols 1–4 22:2977–2980

    Google Scholar 

  76. Hsueh M-L, Chien J-C, Chang F-C, Wu H-D, Chong F-C (2005) Respiratory wheeze detection system. Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, 1–4

    Google Scholar 

  77. Guntupalli KK, Alapat PM, Bandi VD, Kushnir I (2008) Validation of automatic wheeze detection in patients with obstructed airways and in healthy subjects. J Asthma 45(10):903–907

    Article  PubMed  Google Scholar 

  78. Lin BS, Yen TS (2014) An FPGA-based rapid wheezing detection system. Int J Environ Res Public Health 11(2):1573–1593

    Article  PubMed  PubMed Central  Google Scholar 

  79. Huq S, Moussavi Z (2010) Automatic breath phase detection using only tracheal sounds. Conference proceedings: annual International conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 2010:272–275

    Google Scholar 

  80. Moussavi ZK, Leopando MT, Rempel GR (1998) Automated respiratory phase detection by acoustical means. Proceedings of the 20th annual international conference of the IEEE engineering in medicine and biology society 20(1):21–24

    Google Scholar 

  81. Yap YL, Moussavi Z (2001) Respiratory onset detection using variance fractal dimension. IEEE Eng Med Bio Soc 2:1554–1556

    Google Scholar 

  82. Yildirim I, Ansari R, Moussavi Z (2008) Automated respiratory phase and onset detection using only chest sound signal. 30th annual international conference of the IEEE engineering in medicine and biology society 1–8:2578–2581

    Google Scholar 

  83. Suzuki A, Sumi C, Nakayama K, Mori M (1995) Real-time adaptive cancelling of ambient noise in lung sound measurement. Med Biol Eng Comput 33(5):704–708

    Article  CAS  PubMed  Google Scholar 

  84. Chang GC, Lai YF (2010) Performance evaluation and enhancement of lung sound recognition system in two real noisy environments. Comput Methods Prog Biomed 97(2):141–150

    Article  Google Scholar 

  85. Hadjileontiadis LJ, Panas SM (1996) Nonlinear separation of crackles and squawks from vesicular sounds using third-order statistics. In: Engineering in medicine and biology society, 1996. Bridging disciplines for biomedicine. Proceedings of the 18th annual international conference of the IEEE, vol. 2215, 31 Oct to 3 Nov 1996, pp 2217–2219. doi:10.1109/IEMBS.1996.646504

    Google Scholar 

  86. Mastorocostas PA, Theocharis JB (2007) A dynamic fuzzy neural filter for separation of discontinuous adventitious sounds from vesicular sounds. Comput Biol Med 37(1):60–69

    Article  PubMed  Google Scholar 

  87. Cortes S, Jane R, Torres A, Fiz JA, Morera J (2006) Detection and adaptive cancellation of heart sound interference in tracheal sounds. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 1:2860–2863

    Google Scholar 

  88. Pourazad MT, Moussavi Z, Thomas G (2006) Heart sound cancellation from lung sound recordings using time-frequency filtering. Med Biol Eng Comput 44(3):216–225

    Article  CAS  PubMed  Google Scholar 

  89. Palaniappan R, Sundaraj K, Ahamed NU (2013) Machine learning in lung sound analysis: a systematic review. Biocybern Biomed Eng 33(3):129–135

    Article  Google Scholar 

  90. Effing T, Kerstjens H, van der Valk P, Zielhuis G, van der Palen J (2009) (Cost)-effectiveness of self-treatment of exacerbations on the severity of exacerbations in patients with COPD: the COPE II study. Thorax 64(11):956–962

    Article  CAS  PubMed  Google Scholar 

  91. Casas A, Troosters T, Garcia-Aymerich J, Roca J, Hernández C, Alonso A, del Pozo F, de Toledo P, Antó JM, Rodríguez-Roisín R, Decramer M (2006) Integrated care prevents hospitalisations for exacerbations in COPD patients. Eur Respir J 28(1):123–130

    Article  CAS  PubMed  Google Scholar 

  92. Garcia-Saez G, Rigla M, Martinez-Sarriegui I, Shalom E, Peleg M, Broens T, Pons B, Caballero-Ruiz E, Gomez EJ, Hernando ME (2014) Patient-oriented computerized clinical guidelines for mobile decision support in gestational diabetes. J Diabetes Sci Technol 8(2):238–246

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fernandez-Granero MA, Sanchez-Morillo D, Leon-Jimenez A (2015) Computerised analysis of telemonitored respiratory sounds for predicting acute exacerbations of COPD. Sensors 15(10):26978–26996

    Article  PubMed  PubMed Central  Google Scholar 

  94. Anderson K, Qiu Y, Whittaker AR, Lucas M (2001) Breath sounds, asthma, and the mobile phone. Lancet 358(9290):1343–1344

    Article  CAS  PubMed  Google Scholar 

  95. Reyes BA, Reljin N, Kong Y, Nam Y, Ha S, Chon KH (2016) Towards the development of a mobile phonopneumogram: automatic breath-phase classification using smartphones. Ann Biomed Eng 44(9):2746–2759

    Article  PubMed  Google Scholar 

  96. Wallace J (2008) Lost in translation: transferring knowledge from research to clinical practice. Adv Psychiatr Treat 19(4):250–258

    Article  Google Scholar 

  97. Grimshaw JM, Eccles MP, Lavis JN, Hill SJ, Squires JE (2012) Knowledge translation of research findings. Implement Sci 7(50):1748–5908

    Google Scholar 

  98. Tetroe JM, Graham ID, Foy R, Robinson N, Eccles MP, Wensing M, Durieux P, Legare F, Nielson CP, Adily A, Ward JE, Porter C, Shea B, Grimshaw JM (2008) Health research funding agencies’ support and promotion of knowledge translation: an international study. Milbank Q 86(1):125–155

    Article  PubMed  PubMed Central  Google Scholar 

  99. McKibbon KA, Lokker C, Wilczynski NL, Ciliska D, Dobbins M, Davis DA, Haynes RB, Straus SE (2010) A cross-sectional study of the number and frequency of terms used to refer to knowledge translation in a body of health literature in 2006: a tower of babel? Implement Sci 5(16):1748–5908

    Google Scholar 

  100. Rubio DM, Schoenbaum EE, Lee LS, Schteingart DE, Marantz PR, Anderson KE, Platt LD, Baez A, Esposito K (2010) Defining translational research: implications for training. Acad Med 85(3):470–475

    Article  PubMed  PubMed Central  Google Scholar 

  101. Graham ID, Logan J, Harrison MB, Straus SE, Tetroe J, Caswell W, Robinson N (2006) Lost in knowledge translation: time for a map? J Contin Educ Heal Prof 26(1):13–24

    Article  Google Scholar 

  102. McGrath PJ, Lingley-Pottie P, Emberly DJ, Thurston C, McLean C (2009) Integrated knowledge translation in mental health: family help as an example. J Can Acad Child Adolesc Psychiatry 18(1):30–37

    PubMed  PubMed Central  Google Scholar 

  103. Bullock H, Watson A, Goering P (2010) Building for success: mental health research with an integrated knowledge translation approach. Can J Commun Ment Health 29(Special issue supplement 2010):9–21

    Article  Google Scholar 

  104. O'Brien K, Brooks D (2006) Two episodic illnesses: lessons learned in rehabilitation. Physiother Can 58(4):251–254

    Article  Google Scholar 

  105. Palange P, Noel JL, Simonds AK (2011) The European Respiratory Society: future directions in medical education. Eur Respir J 38(3):498–499

    Article  CAS  PubMed  Google Scholar 

  106. Pasterkamp H, Brand PL, Everard M, Garcia-Marcos L, Melbye H, Priftis KN (2016) Towards the standardisation of lung sound nomenclature. Eur Respir J 47(3):724–732

    Article  PubMed  Google Scholar 

  107. Postiaux G, Lens E (1999) Pulmonary stethacoustic nomenclature: why not a worldwide consensus? Rev Mal Respir 16(6):1075–1090

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Bruria Freidman from the Sleep-Wake Disorder Unit of Soroka University Medical Center for her support and collaboration. This study was supported in part by the Israeli Ministry of Industry and Trade, the Kamin Program, award no. 46168, and by the Israel Science Foundation (ISF) grant no. 1403/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alda Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marques, A., Jácome, C. (2018). Future Prospects for Respiratory Sound Research. In: Priftis, K., Hadjileontiadis, L., Everard, M. (eds) Breath Sounds. Springer, Cham. https://doi.org/10.1007/978-3-319-71824-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71824-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71823-1

  • Online ISBN: 978-3-319-71824-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics