Skip to main content

Advances in Nano Based Biosensors for Food and Agriculture

  • Chapter
  • First Online:
Nanotechnology, Food Security and Water Treatment

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW))

Abstract

Nanotechnology is revolutionizing development in almost all technological sectors, with applications in building materials, electronics, cosmetics, pharmaceuticals, food processing, food quality control and medicine. In particular, nano-based sensors use nanomaterials either as sensing material directly or as associated materials to detect specific molecular interactions occurring at the nano scale. Nano biosensors are used for clinical diagnostics, environmental monitoring, food and quality control. Nano biosensors can achieve on site, in situ and online measurements.

This chapter reviews nanobiosensors and nanosensors, and their applications to food and agriculture. Nanosensors exhibit an unprecedented level of performance and the ability to ‘nano-tune’ various properties to achieve the desired levels of sensitivity and detection limit. Nanobiosensors are used for the monitoring of food additives, toxins and mycotoxins, microbial contamination, food allergens, nutritional constituents, pesticides, environmental parameters, plant diseases, and genetically modified organisms. Applications include: a nano-diagnostic briefcase kit for in situ crop investigation; a dip stick nanosensor kit ‘4-my-co-sensor’ for multi-analyte detection; a barcode assay for genetically modified organisms (GMO) using Surface Enhanced Raman Spectroscopy (SERS); and a mobile barcode enzymatic assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Actis P, Jejelowo O, Pourmand N (2010) Ultrasensitive mycotoxin detection by STING sensors. Biosens Bioelectron 26(2):333–337

    Article  CAS  Google Scholar 

  • Alves RC, Barroso MF, González-García MB, Beatriz M, Oliveira PP, Matos CD (2016) New trends in food allergens detection: toward biosensing strategies. Crit Rev Food Sci Nutr 56(14):2304–2319

    Article  CAS  Google Scholar 

  • Ansari AA, Kaushik A, Solanki PR, Malhotra BD (2010) Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry 77(2):75–81

    Article  CAS  Google Scholar 

  • Arnold MA (1985) Enzyme-based fiber optic sensor. Anal Chem 57:565–566

    Article  CAS  Google Scholar 

  • Arora K, Chand S, Malhotra BD (2006a) Recent developments in bio-molecular electronics detection techniques for food pathogens. Anal Chim Acta 568:259–272

    Article  CAS  Google Scholar 

  • Arora K, Chaubey A, Singhal R, Singh RP, Pandey MK, Samanta SB, Malhotra BD, Chand S (2006b) Application of electrochemically prepared polypyrrole–polyvinyl sulphonate films to DNA biosensor. Biosens Bioelectron 21:1777–1783

    Article  CAS  Google Scholar 

  • Arora K, Prabhakar N, Chand S, Malhotra BD (2007) Conducting polyaniline based reusable electrochemical genosensor for detection of E coli. Anal Chem 79:6152–6158; Err. 2008, 80:1833

    Google Scholar 

  • Bettazzi F, Lucarelli F, Palchetti I, Berti F, Marrazza G, Mascini M (2008) Disposable electrochemical DNA array for PCR amplified detection of hazel nut allergens in food stuffs. Anal Chim Acta 614(1):93–102

    Article  CAS  Google Scholar 

  • Bremer MGEG, Smits NGE, Haasnoot W (2009) Biosensor immunoassay for traces of hazelnut protein in olive oil. Anal Bioanal Chem 395:119–126

    Article  CAS  Google Scholar 

  • Chae EJ, Lee JH, Oh BK, Choi JW (2013) Label-free Nanobiosensor to detect infectious Bacterica based on SERS. J Biomed Nanotechnol 9(4):659–663

    Article  CAS  Google Scholar 

  • Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17(6–7):441–456

    Article  CAS  Google Scholar 

  • Chauhan VM, Burnett GR, Aylott JW (2011) Dual-fluorophore ratiometric pH nanosensor with tuneable pKa and extended dynamic range. Analyst 136(9):1799–1801

    Article  CAS  Google Scholar 

  • Chauhan R, Singh J, Sachdev T, Basu T, Malhotra BD (2016) Recent advances in mycotoxins detection. Biosens Bioelectron 81:532–545

    Article  CAS  Google Scholar 

  • Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23:5296–5304

    Article  CAS  Google Scholar 

  • Chen K, Han H, Luo Z, Wang Y, Wang X (2012) A practicable detection system for genetically modified rice by SERS-barcoded nanosensors. Biosens Bioelectron 34:118–124

    Article  CAS  Google Scholar 

  • Chen L, Mungroo N, Daikuara L, Neethirajan S (2015) Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. J Nanobiotechnol 45-54(1–9):13

    Google Scholar 

  • Chen Q, Hu W, Sun C, Li H, Ouyang Q (2016a) Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins. Anal Chim Acta 938:137–145

    Article  CAS  Google Scholar 

  • Chen L, Tian X, Zhao Y, Li Y, Yang C, Zhou Z, Liu X (2016b) A ratiometric fluorescence nanosensor for highly selective and sensitive detection of selenite. Analyst 141:4685–4693

    Article  CAS  Google Scholar 

  • Clarke J, HC W, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270

    Article  CAS  Google Scholar 

  • Crevillén AG, Avila M, Pumera M, González MC, Escarpa A (2007) Food analysis on microfluidic devices using ultrasensitive carbon nanotube detectors. Anal Chem 79:7408–7415

    Article  CAS  Google Scholar 

  • Crevillén AG, Pumera M, González MC, Escarpa A (2008) Carbon nanotube disposable detectors in microchipcapillary electrophoresis for water-soluble vitamin determination: analytical possibilities in pharmaceutical quality control. Electrophoresis 29:2997–3004

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Google Scholar 

  • Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15(4):591–605

    Google Scholar 

  • Demchenko AP (2006) Visualization and sensing of intermolecular interactions with two-color fluorescent probes. FEBS Lett 580:2951–2957

    Article  CAS  Google Scholar 

  • Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiology 5(6):901–922

    Google Scholar 

  • Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19(4):365–370

    Article  CAS  Google Scholar 

  • Eissa S, Chaker T, L’Hocine L, Zourob M (2012) Electrochemical immunosensor for the milk allergen b-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosen Bioelectron 38:308–313

    Article  CAS  Google Scholar 

  • Eren T, Atar N, Yola ML, Karimi-Maleh H (2015) A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin red yeast rice. Food Chem 185:430–436

    Article  CAS  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iranian 20(3):1055–1058

    Google Scholar 

  • Eun AJC, Wong SM (2000) Molecular beacons: a new approach to plant virus detection. Phytopathology 90:269–275

    Article  CAS  Google Scholar 

  • Eun AJC, Huang L, Chew FT, Li SFY, Wong S-M (2002a) Detection of two orchid viruses using quartz crystal microbalance-based DNA biosensors. Phytopathology 92:654–658

    Article  Google Scholar 

  • Eun AJC, Huang L, Chew FT, Li SFY, Wong SM (2002b) Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J Virol Methods 99:71–79

    Article  CAS  Google Scholar 

  • Fadiran AO, Dlamini SC, Mavuso AA (2008a) Comparative study of the phosphate levels in some surface and ground water bodies of Swaziland. Bull Chem Soc Ethiop 22(2):197–206

    Article  CAS  Google Scholar 

  • Fadiran AO, Dlamini SC, Mavuso A (2008b) A comparative study of the phosphate levels in some surface and ground water bodies of Swaziland. Bull Chem Soc Ethiop 22(2):197–206

    Article  CAS  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors (Basel) 5(3):537–561

    Article  CAS  Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014a) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139(15):3804–3810

    Article  CAS  Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014b) The electrochemical society; Pennington, NJ, USA: 2014. Plant volatile sensor: enzymatic transducer for selective and sensitive determination of methyl salicyalte. ECS meetings Abstract MA 01:414

    Google Scholar 

  • Farabullini F, Lucarelli F, Palchetti I, Marrazza M, Mascini M (2007) Disposable electrochemical genosensor for simultaneous analysis of bacterial food contaminants. Biosens Bioelectron 22(7):1544–1549

    Article  CAS  Google Scholar 

  • Fazio B, D’Andrea C, Foti A, Messina E, Irrera A, Donato MG, Villari V, Micali N, Maragò OM, Gucciardi PG (2016) SERS detection of biomolecules at physiological pH via aggregation of gold Nanorods mediated by optical forces and Plasmonic heating. Nat Sci Rep 6(1–13):26952

    Article  CAS  Google Scholar 

  • Firrao G, Moretti M, Ruiz-Rosquete M, Gobbi E, Locci R (2005) Nanobiotransducer for detecting flavescence dorée phytoplasma. J Plant Pathol 87(2):101–107

    CAS  Google Scholar 

  • Ge S, Lu J, Ge L, Yan M, Yu J (2011) Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochim Acta A 79:1704–1709

    Article  CAS  Google Scholar 

  • Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359

    Article  CAS  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  Google Scholar 

  • Goluch ED, Nam JM, Georganopoulou DG, Chiesl TN, Shaikh KA, Ryu KS, Barron AE, Mirkin CA, Liu CA (2006) Bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6(10):1293–1299

    Article  CAS  Google Scholar 

  • Guo J, Wong JXH, Cui C, Li X, Yu HZA (2015) Smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst 140(16):5363–5790

    Article  CAS  Google Scholar 

  • Gyawali R, Ibrahim SA (2012) Synergistic effect of copper and lactic acid against Salmonella and Escherichia coli O157:H7: a review. Emirates J Food Agric 24:1–11

    Google Scholar 

  • Han SR, Lee SW (2013) In Vitro selection of RNA aptamer specific to Salmonella Typhimurium. J Microbiol Biotechnol 23(6):878–884

    Article  CAS  Google Scholar 

  • Han SR, Yu J, Lee SW (2014) In vitro selection of RNA aptamers that selectively bind danofloxacin. Biochem Biophys Res Commun 448(4):397–402

    Article  CAS  Google Scholar 

  • Hashimoto Y, Nakamura H, Asaga K, Karube I (2008) A new diagnostic method for soil-borne disease using a microbial biosensor. Microbes Environ 23(1):35–39

    Article  Google Scholar 

  • Hiep HM, Endo T, Kerman K, Chikae M, Kim D-K, Yamamura S, Takamura Y, Tamiya E (2007) A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci Technol Adv Mat 8:331–338

    Article  CAS  Google Scholar 

  • Ho JA, Hsu WL, Liao WC, Chiu JK, Chen ML, Chang HC, Li CC (2010) Ultrasensitive electrochemical detection of biotin using electrically addressable site-oriented antibody immobilization approach via aminophenyl boronic acid. Biosens Bioelectron 26:1021–1027

    Article  CAS  Google Scholar 

  • Hohensinner V, Maier I, Pittne F (2007) A ‘gold cluster-linked immunosorbentassay’: optical near-field biosensor chip for the detection of allergenic-lactoglobulin in processed milk matrices. J Biotechnol 130:385–388

    Article  CAS  Google Scholar 

  • Hosseini M, Khabbaz H, Dadmehr M, Ganjali MR, Mohamadnejad J (2015) Aptamer-based Colorimetric and Chemiluminescence detection of Aflatoxin B1 in foods samples. Acta Chim Slov 62(3):721–728

    Article  CAS  Google Scholar 

  • Hu XY, Xiao Y, Chen HY (1999) Adsorption characteristics of Fe (CN)6 3−/4− on Au colloids as monolayer films on cysteamine-modified gold electrode. J Electroanal Chem 466:26–30

    Article  CAS  Google Scholar 

  • Hu W, Chen Q, Li H, Ouyang Q, Zhao J (2016) Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles. Biosens Bioelectron 80:398–404

    Article  CAS  Google Scholar 

  • Huang Y, Bell MC, Suni II (2008) Impedance biosensor for peanut protein Ara h 1. Anal Chem 80:9157–9161

    Article  CAS  Google Scholar 

  • Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RM, Hart JP (2016) Recent advances in the fabrication and application of screen-printed electrochemical (bio)sensors based on carbon materials for biomedical, Agri-food and environmental analyses. Biosensors 6(4):50

    Article  Google Scholar 

  • IARC (1993) Monographs on the Evaluation of Carcinogenic Risks to Humans. In: Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC, Geneva, p 56

    Google Scholar 

  • Iglesias J, Saldana EG, Jaen JA (2001) On the Tannic acid interaction with metallic iron. Hyperfine Interact 134:109–114

    Article  CAS  Google Scholar 

  • Izadi Z, Sheikh-Zeinoddin M, Ensafi AA, Soleimanian-Zad S (2016) Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosens Bioelectron 80:582–589

    Article  CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 15:1–21

    Google Scholar 

  • James C (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5:3497–3502

    Article  CAS  Google Scholar 

  • Jansen RM, Hofstee JW, Wildt J, Verstappen FW, Bouwmeester H, van Henten EJ (2009) Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses. Plant Signal Behav 4:824–829

    Article  CAS  Google Scholar 

  • Jin R, Cao Y, Mirkin CA, Kelly K, Schatz GC, Zheng J (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  • John K, Beedanagari S (2014) Heterocyclic Aromatic Amines. Encyclopaedia of Toxicology 855–863 (thirded.)

    Google Scholar 

  • Jomma EY, Ding SN (2016) One-pot hydrothermal synthesis of magnetite Prussian blue nano-composites and their application to fabricate glucose biosensor. Sensors (Basel). 16(2):243

    Article  CAS  Google Scholar 

  • Kacmaz S, Ertekin K, Mercan D, Oter O, Cetinkaya E, Celik E (2015) An ultra sensitive fluorescent nanosensor for detection of ionic copper. Spectrochim Acta A Mol Biomol Spectrosc 135:551–559

    Article  CAS  Google Scholar 

  • Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BD (2009) A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology 20(5):055105

    Article  CAS  Google Scholar 

  • Ke P, Sun H, Liu M, Su Z, Hu K, Zhua H, Guo H, Sun H, Andresen TL, Olsen LF (2016) Polymeric pH nanosensor with extended measurement range bearing octaarginine as cell penetrating peptide. IET Nanobiotechnol 10(1):8–12

    Article  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    Article  Google Scholar 

  • Kim KI, Lee JC, Robards K, Choi SH (2010) Immobilization of tyrosinase in carboxylic and carbonyl group-modified MWNT electrode and its application for sensing phenolics in red wines. J Nanosci Nanotechnol 10(6):3790–3798

    Article  CAS  Google Scholar 

  • Kulagina NV, Shankar L, Michael AC (1999) Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. Anal Chem 71:5093–5100

    Article  CAS  Google Scholar 

  • Labroo P, Cui Y (2013) Flexible grapheme bio-nanosensor for lactate. Biosens Bioelectron 41:852–856

    Article  CAS  Google Scholar 

  • Lattanzio VMT, Nivarlet N, Lippolis V, Gatta SD, Huet AC, Delahaut P, Granier B, Visconti A (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108

    Article  CAS  Google Scholar 

  • Lee YJ, Han SR, Maeng JS, Cho YJ, Lee SW (2012) In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochem Biophys Res Commun 417:414–420

    Article  CAS  Google Scholar 

  • Liang RP, Wang XN, Liu CM, Meng XY, Qiu JD (2013) Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection. J Chromatogr A 1315:28–35

    Article  CAS  Google Scholar 

  • Lim JW, Ha D, Lee J, Lee SK, Kim T (2015 May 11) Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 3:61

    Article  Google Scholar 

  • Lin X, Guo X (2016) Advances in biosensors, Chemosensors and assays for the determination of Fusarium Mycotoxins. Toxins (Basel) 8(6):173

    Article  CAS  Google Scholar 

  • Lin HY, Huang CH, SH L, Kuo IT, Chau LK (2014a) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378

    Article  CAS  Google Scholar 

  • Lin XX, Li ZH, Huang XY, Jiang Y, Wei QH, Chena GN (2014b) Pt2Ag acetylide-doped silica nanoparticles: enabling luminescence of Pt2Ag complexes in water and sensors for highly sensitive detection of cyanide anions. Dalton Trans 43:8861–8868

    Article  CAS  Google Scholar 

  • Lísalová HV, Surman F, Víšová I, Milan Vala M, Špringer T, Ermini ML, Šípová H, Šedivák P, Houska M, Riedel T, Georgievski OP, Brynda E, Homola J (2016) Copolymer brush-based ultralow-fouling biorecognition surface platform for food safety. Anal Chem. in press

    Google Scholar 

  • Long Q, Li H, Zhang Y, Yao S (2015) Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens Bioelectron 68:168–174

    Article  CAS  Google Scholar 

  • López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46

    Google Scholar 

  • López C, Zougagh M, Algarra M, Rodríguez-Castellón E, Campos BB, Esteves da Silva JCG, Jiménez-Jiménez J, Ríos A (2015) Microwave-assisted synthesis of carbon dots and its potential as analysis of four heterocyclic aromatic amines. Talanta 132:845–850

    Article  CAS  Google Scholar 

  • Lu Y, Oshima T, Ushio H (2004) Rapid detection of fish major allergen parvalbumin by surface plasmon resonance biosensor. Food Chem Toxicol 69:C652–C657

    CAS  Google Scholar 

  • Lu X, Wang X, Wu L, Wu L, DL F, Gao Y, Chen J (2016) Response characteristics of bisphenols on a metal−organic framework-based Tyrosinase Nanosensor. ACS Appl Mater Interf 8:16533–16539

    Article  CAS  Google Scholar 

  • Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, Malki A, Aziz H, Althani A, Hoorfar M (2015) Microfluidics integrated biosensors: a leading technology towards lab-on-a-Chip and Sensing applications. Sensors (Basel). 15(12):30011–30031

    Article  CAS  Google Scholar 

  • Magro M, Bonaiuto E, Baratella D, Roger JA, Jakubec P, Corraducci V, Tucˇek J, Malina O, Zborˇil R, Vianello F (2016) Electrocatalytic nanostructured ferric tannates: characterization and application of a polyphenol nanosensor. Chem Phys Chem 17:1–9. (An article in press)

    Article  Google Scholar 

  • Maier I, Morgan MR, Lindner W, Pittner F (2008) Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection. Anal Chem 80:2694–2703

    Article  CAS  Google Scholar 

  • Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, Jejelowo OA, Pourmand N (2010) Sensitive giant magneto resistive-based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron 25(7):1635–1639

    Article  CAS  Google Scholar 

  • Maragos CM (2016) Multiplexed biosensors for Mycotoxins. J AOAC Int 99(4):849–860

    Article  CAS  Google Scholar 

  • McPartlin DA, Lochhead MJ, Connell LB, Doucette GJ, O'Kennedy RJ (2016) Use of biosensors for the detection of marine toxins. Essays Biochem 60(1):49–58

    Article  Google Scholar 

  • Maddinedi SB, Mandal BK, Ranjan S, Dasgupta N (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5(34):26727–26733

    Google Scholar 

  • Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Ranjan S, Dasgupta N (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258

    Google Scholar 

  • Menzel A, Gubeli RJ, Gu¨der F, Weberb W, Zachariasac M (2013) Detection of real-time dynamics of drug–target interactions by ultralong nanowalls. Lab Chip 13:4173–4180

    Article  CAS  Google Scholar 

  • Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313

    Article  CAS  Google Scholar 

  • Mohammed MI, Desmulliez MPY (2013) The manufacturing of packaged capillary action microfluidic systems by means of CO2 laser processing. Microsyst Technol 19(6):809–818

    Article  CAS  Google Scholar 

  • Mohammed I, Mullett W, Lai E, Yeung J (2001) Is biosensor a viable method for food allergen detection? Anal Chim Acta 444:97–102

    Article  CAS  Google Scholar 

  • Montereali MR, Seta LD, Vastarella W, Pilloton R (2010) A disposable Laccase–Tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J Mol Catal B Enzym 64:189–194

    Article  CAS  Google Scholar 

  • Muyanja CMBK, Narvhus JA, Langsrud T (2012) Organic acids and volatile organic compounds produced during traditional and starter culture fermentation of Bushera, a Ugandan fermented cereal beverage. Food Biotechnol 26:1–28

    Article  CAS  Google Scholar 

  • Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83(12):4327–4341

    Article  CAS  Google Scholar 

  • Noh HJ, Kim HS, Cho S, Park Y (2013) Melamine nanosensing with chondroitin sulfate-reduced gold nanoparticles. J Nanosci Nanotechnol 13(12):8229–8238

    Article  CAS  Google Scholar 

  • Nollet L, De Gelder L (2013) Handbook of water analysis. CRC Press, Boca Raton

    Google Scholar 

  • Ogabiela E, Adeloju SB, Cui J, Wu Y, Chen WA (2015) Novel ultrasensitive phosphate amperometric nanobiosensor based on the integration of pyruvate oxidase with highly ordered gold nanowires array. Biosens Bioelectron 71:278–285

    Article  CAS  Google Scholar 

  • Omara W, Amin R, Elhaes H, Ibrahim M, Elfeky SA (2016) Preparation and characterization of novel polyaniline nanosensor for sensitive detection of formaldehyde. Recent Pat Nanotechnol 9(3):195–203

    Article  CAS  Google Scholar 

  • Ozsolak F (2012) Third-generation sequencing techniques and applications to drug discovery. Expert Opin Drug Discov 7(3):231–243

    Article  CAS  Google Scholar 

  • Pal S, Sharma MK, Danielsson B, Willander M, Chatterjee R, Bhand S (2014) A miniaturized nanobiosensor for choline analysis. Biosens Bioelectron 54:558–564

    Article  CAS  Google Scholar 

  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  CAS  Google Scholar 

  • Pimentel D (2009) Invasive plants: their role in species extinctions and economic losses to agriculture in the USA. In: Inderjit (ed) Management of invasive weeds, invading nature – Springer Series in invasion ecology. Springer, Dordrecht pp 1–7

    Google Scholar 

  • Pollet J, Delport F, Janssen KP, Tran D, Wouters J, Verbiest T, Lammertyn J (2011) Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta 83:1436–1441

    Article  CAS  Google Scholar 

  • Prabhakar N, Arora K, Singh SP, Pandey MK, Singh H, Malhotra BD (2007) Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor. Anal Chim Acta 589:6–13

    Article  CAS  Google Scholar 

  • Prabhakar N, Sumanaa G, Arora K, Singh H, Malhotra BD (2008) Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate. Electrochim Acta 53:4344–4350

    Article  CAS  Google Scholar 

  • Puangsombat K, Gadgil P, Houser TA, Hunt MC, Smith JS (2012) Occurrence of heterocyclic amines in cooked meat products. Meat Sci 90:739–746

    Article  CAS  Google Scholar 

  • Qian S, Lin H (2015) Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Anal Chem 87(10):5395–5400

    Article  CAS  Google Scholar 

  • Qiu L, Wang WQ, Zhang AW, Zhang NN, Lemma T, Ge HH, Toppari JJ, Hytönen VP, Wang J (2016) Core−Shell Nanorod columnar array combined with gold nanoplate−nanosphere assemblies enable powerful in situ SERS detection of bacteria. ACS Appl Mater Interfaces 8:24394–24403

    Article  CAS  Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor. J Plant Pathol 94:525–534

    Google Scholar 

  • Ragavan KV, Rastogi NK, Thakur MS (2013) Sensors and biosensors for analysis of Bisphenol-A. TrAC Trends Anal Chem 52:248−260

    Article  CAS  Google Scholar 

  • Ramesh R, Puhazhendi P, Kumar J, Gowthaman MK, D'Souza SF, Kamini NR (2015) Potentiometric biosensor for determination of urea in milk using immobilized Arthrobacter creatinolyticus urease. Mater Sci Eng C Mater Biol Appl 49:786–792

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):1–23

    Google Scholar 

  • Raz SR, Liu H, Norde W, Bremer MG (2010) Food allergens profiling with an imaging surface plasmon resonance-based biosensor. Anal Chem 82:8485–8491

    Article  CAS  Google Scholar 

  • Reverté L, Prieto-Simón B, Campàs M (2016) New advances in electrochemical biosensors for the detection of toxins: nanomaterials, magnetic beads and microfluidics systems. A review. Anal Chim Acta 908:8–21

    Article  CAS  Google Scholar 

  • Richman EL, Kenfield SA, Stampfer MJ, Giovannucci EL, Zeisel SH, Willett WC, Chan JM (2012) Choline intake and risk of lethal prostate cancer: incidence and survival. Am J Clin Nutr 96(4):855–863

    Article  CAS  Google Scholar 

  • Ruscito A, Smith M, Goudreau DN, DeRosa MC (2016) Current status and future prospects for aptamer-based Mycotoxin detection. J AOAC Int 99(4):865–877

    Article  CAS  Google Scholar 

  • Saeedfar K, Heng LY, Ling TL, Rezayi M (2013) Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate. Sensors (Basel). 13(12):16851–16866

    Article  CAS  Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515

    Article  Google Scholar 

  • Sekhon BS (2010) Food nanotechnology – an overview. Nanotechnol Sci Appl 3:1–15

    CAS  Google Scholar 

  • Sharma A, Matharu Z, Sumana G, Solanki PR, Kim CG, Malhotra BD (2010) Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films 519(3):1213–1218

    Article  CAS  Google Scholar 

  • Shukla A, Dasgupta N, Ranjan S, Singh S, Chidambram R (2017) Nanotechnology towards prevention of anaemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip 31(5):863–879

    Google Scholar 

  • Shwetha N, Selvakumar LS, Thakur MS (2013) Aptamer–nanoparticle-based chemiluminescence for p53 protein. Anal Biochem 441:73–79

    Article  CAS  Google Scholar 

  • Siddiki MSR, Shimoaoki S, Ueda S, Maeda I (2012) Thermoresponsive magnetic nano-biosensors for rapid measurements of Inorganic Arsenic and Cadmium. Sensors (Basel) 12(10):14041–14052

    Article  CAS  Google Scholar 

  • Singh R, Sharma PP, Baltus RE, Suni II (2010a) Nanopore immunosensor for peanut protein Ara h1. Sens Actuators B Chem 145:98–103

    Article  CAS  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010b) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519:1156–1159

    Article  CAS  Google Scholar 

  • Singh A, Singh MP, Sharma, V, Verma HN, Arora K (2011) Chapter 13: molecular techniques in edited book on chemical analysis of food: techniques & applications. Elsevier Publishing. http://www.elsevier.com/wps/find/bookdescription.Cws_home/726991/description#description. ISBN: 978-0-12-384862-8

  • Singh A, Joshi Y, Singh MP, Arora K (2013a) Anti-atrazine functionalized gold nano structures for environmental monitoring. Biosens J 3(1):105

    Google Scholar 

  • Singh A, Sinsinbar G, Choudhary M, Kumar V, Pasricha R, Singh SP, Verma HN, Arora K (2013b) Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens Actuators: B 185:675–684

    Article  CAS  Google Scholar 

  • Singh A, Chaudhary M, Singh MP, Verma HN, Singh SP, Arora K (2015a) Direct electrochemical deposition of gold Nano-aggregates and their application towards electrochemical DNA biosensor for detection of Salmonella typhi. Bioelectrochemistry 105:7–15

    Article  CAS  Google Scholar 

  • Singh A, Verma HN, Arora K (2015b) Surface Plasmon resonance based label-free detection of salmonella. Appl Biochem Biotechnol 175:1330–1343

    Article  CAS  Google Scholar 

  • Siripireddy B, Mandal BK, Ranjan S, Dasgupta N, Ramalingam C (2017) Nano-zirconia – evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133. https://doi.org/10.1016/j.jphotobiol.2017.04.004

  • Sivasankaran U, Cyriac S T, Menon S, Kumar KG (2016) Fluorescence turn off sensor for brilliant BlueFCF- an approach based on inner filter effect. J Fluoresc (article in press)

    Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196

    Article  CAS  Google Scholar 

  • Søndergaard RV, Henriksen JR, Andresen TL (2014) Design, calibration and application of broad-range optical nanosensors for determining intracellular pH. Nat Protoc 9(12):2841–2858

    Article  CAS  Google Scholar 

  • Spellman F (2013) Basic water chemistry. Handbook of water and wastewater treatment plant operations, 3rd edn. CRCPress, Boca Raton, pp 453–470

    Google Scholar 

  • Swami A, Kumar A, Selvakannan P, Mandal S, Pasricha R, Sastry M (2003) Highly oriented gold nanoribbons by the reduction of aqueous chloroaurate ions by hexadecylaniline Langmuir monolayers. Chem Mater 15:17–19

    Article  CAS  Google Scholar 

  • Tammina SK, Mandal BK, Ranjan S, Dasgupta N (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168

    Google Scholar 

  • Tan HL, Li Q, Ma C, Song Y, Xu F, Chen S, Wang L (2015) Lanthanide based dual-emission fluorescent probe for detection of mercury(II) in milk. Biosens Bioelectron 63:566–571

    Article  CAS  Google Scholar 

  • Ten ST, Hashim U, Gopinath SCB, Liu WW, Foo KL, Sam ST, SFA R, Voon CH, Nordin AN (2016) Highly sensitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures. Biosens Bioelectron. in press

    Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96:4698–4703

    Article  CAS  Google Scholar 

  • Touhami A (2014) Chapter 15: biosensors and nanobiosensors: design and applications. In: Seifalian A, de Mel A, Kalaskar DM (eds) Nanomedicine. Onc Central Press, pp 374–403

    Google Scholar 

  • Tran DT, Knez K, Janssen KP, Pollet J, Spasic D, Lammertyn J (2013) Selection of aptamers against Ara h 1 protein for FO-SPR biosensing of peanut allergens in food matrices. Biosens Bioelectron 15:245–251

    Article  CAS  Google Scholar 

  • Turner NW, Bramhmbhatt H, Szabo-Vezse M, Poma A, Coker R, Piletsky SA (2015) Analytical methods for determination of mycotoxins: an update (2009–2014). Anal Chim Acta 901:12–33

    Article  CAS  Google Scholar 

  • Upadhyay LSB, Verma N (2015) Recent advances in phosphate biosensors. Biotechnol Lett 37:1335–1345

    Article  CAS  Google Scholar 

  • Wang L, Chen X, Zhan J, Chai Y, Yang C, Xu L et al (2005) Synthesis of gold nano-and microplates in hexagonal liquid crystals. J Phys Chem B 109:3189–3194

    Article  CAS  Google Scholar 

  • Wang W, Han J, Wu Y, Yuan F, Chen Y, Ge Y (2011) Simultaneous detection of eight food allergens using optical thin-film biosensor chips. J Agric Food Chem 59:6889–6894

    Article  CAS  Google Scholar 

  • Wang Z, Wu L, Shen B, Jiang Z (2013) Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles. Talanta 114:124–130

    Article  CAS  Google Scholar 

  • Wang L, Zheng J, Yang S, Wu C, Liu C, Xiao Y, Li Y, Qing Z, Yang R (2015) Two-photon sensing and imaging of endogenous biological cyanidein plant tissues using Graphene Quantum Dot/Gold nanoparticle conjugate. ACS Appl Mater Interfaces 7:19509–19515

    Article  CAS  Google Scholar 

  • Weng X, Neethirajan S (2016) A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron 85:649–656

    Article  CAS  Google Scholar 

  • Wu Q, Long Q, Li H, Zhang Y, Yao S (2015) An up conversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk. Talanta 136:47–53

    Article  CAS  Google Scholar 

  • Xiulan S, Yinzhi Z, Jingdong S, Liyan S, He Q, Weijuan Z (2010) A quartz crystal microbalance-based immunosensor for shrimp allergen determination in food. Eur Food Res Technol 231:563–570

    Article  CAS  Google Scholar 

  • Yang JH, Lee JC, Choi SH (2009) Tyrosinase-immobilized biosensor based on the functionalized Hydroxyl group-MWNT and detection of phenolic compounds in red wines. J Sens 2009:1–9

    Article  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009a) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Multi-Funct Mater Struct II Parts 1 and 2 79–82:513–516

    Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009b) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  CAS  Google Scholar 

  • Yman I, Eriksson A, Johansson M, Hellenäs K (2006) Food allergen detection with biosensor immunoassays. J AOAC Int 89:856–861

    CAS  Google Scholar 

  • Yola ML, Uzun L, Özaltın N, Denizli A (2014) Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods. Talanta 120:318–324

    Article  CAS  Google Scholar 

  • Yoo SM, Lee SY (2016) Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol 34(1):7–25

    Article  CAS  Google Scholar 

  • Zakel S, Zakel S, Rienitz O, Güttler B, Rainer Stosch R (2011) Double isotope dilution surface-enhanced Raman scattering as a reference procedure for the quantification of biomarkers in human serum. Analyst 136:3956–3961

    Article  CAS  Google Scholar 

  • Zamolo VA, Valenti G, Venturelli E, Chaloin O, Marcaccio M, Boscolo S, Castagnola V, Sosa S, Berti F, Fontanive G, Poli M, Tubaro A, Bianco A, Paolucci F, Prato M (2012) Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin. ACS Nano 6(9):7989–7997

    Article  CAS  Google Scholar 

  • Zeisel SH, Blusztajn JK (1994) Annual review of nutrition choline and human. Nutrition 14:269–296

    Article  CAS  Google Scholar 

  • Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489

    Article  CAS  Google Scholar 

  • Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38(3):95–109

    Article  Google Scholar 

  • Zhang L, Xu J, Mi L, Gong H, Jiang S, Yu Q (2012) Multifunctional magnetic–plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens Bioelectron 31:130–136

    Article  CAS  Google Scholar 

  • Zhang X, Zhou Q, Shen Z, Li Z, Fei R, Ji EH, Huc S, Hua Y (2015) Quantum dot incorporated Bacillus spore as nanosensor for viral infection. Biosens Bioelectron 74:575–580

    Article  CAS  Google Scholar 

  • Zhao Q, Huang H, Zhang L, Wang L, Zeng Y, Xia X, Liu F, Chen Y (2016) Strategy to fabricate naked-eye readout ultrasensitive Plasmonic Nanosensor based on enzyme mimetic gold nanoclusters. Anal Chem 88:1412−1418

    Google Scholar 

  • Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C (2014) SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem 86:1525–1533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DBT sponsored projects IYBA-2008 (BT/B1/12/045/2008) and RGYI-2009 (BT/PR13127/GBD/27/195/2009), JNU capacity build up funds (UPE-I) and UPE-II(158, 161) and DST PURSE–I&II are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arora, K. (2018). Advances in Nano Based Biosensors for Food and Agriculture. In: Gothandam, K., Ranjan, S., Dasgupta, N., Ramalingam, C., Lichtfouse, E. (eds) Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World. Springer, Cham. https://doi.org/10.1007/978-3-319-70166-0_1

Download citation

Publish with us

Policies and ethics