Skip to main content

Part of the book series: Mechanical Engineering Series ((MES))

  • 574 Accesses

Abstract

Organization of a large number of nanowires is an important aspect in the fabrication of integrated piezotronic strain sensors. A good arrangement of a nanowire array makes it easier to do electrode deposition, device isolation, packaging, and other processes during the fabrication. It also determines how sensitive those piezotronic nanostructures are to mechanical signals from certain directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauzauskie PJ et al (2006) Optical trapping and integration of semiconductor nanowire assemblies in water. Nat Mater 5(2):97–101

    Article  Google Scholar 

  2. Freer EM et al (2010) High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat Nanotechnol 5(7):525–530

    Article  Google Scholar 

  3. Zhu G et al (2010) Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett 10(8):3151–3155

    Article  Google Scholar 

  4. Thostenson ET, Chou T-W (2002) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys 35(16):L77

    Article  Google Scholar 

  5. Huang H et al (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17(13):1652–1656

    Article  Google Scholar 

  6. Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B Condens Matter Mater Phys 72(12):121404

    Article  Google Scholar 

  7. Huang MH et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899

    Article  Google Scholar 

  8. Smith PA et al (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77(9):1399–1401

    Article  Google Scholar 

  9. Dong L et al (2005) Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett 5(10):2112–2115

    Article  Google Scholar 

  10. Tanase M et al (2002) Magnetic trapping and self-assembly of multicomponent nanowires. J Appl Phys 91:8549

    Article  Google Scholar 

  11. Hangarter CM, Myung NV (2005) Magnetic alignment of nanowires. Chem Mater 17(6):1320–1324

    Article  Google Scholar 

  12. Fan Z et al (2007) Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett 8(1):20–25

    Article  Google Scholar 

  13. Yao J, Yan H, Lieber CM (2013) A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat Nanotechnol 8(5):329–335

    Article  Google Scholar 

  14. LeMieux MC et al (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science 321(5885):101–104

    Article  Google Scholar 

  15. Opatkiewicz JP, LeMieux MC, Bao Z (2010) Influence of electrostatic interactions on spin- assembled single-walled carbon nanotube networks on amine-functionalized surfaces. ACS Nano 4(2):1167–1177

    Article  Google Scholar 

  16. Kim F et al (2001) Langmuir−Blodgett nanorod assembly. J Am Chem Soc 123(18):4360–4361

    Article  Google Scholar 

  17. Tao A et al (2003) Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3(9):1229–1233

    Article  Google Scholar 

  18. Huang Y et al (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633

    Article  Google Scholar 

  19. Huang J et al (2007) One-step patterning of aligned nanowire arrays by programmed dip coating. Angew Chem Int Ed 46(14):2414–2417

    Article  Google Scholar 

  20. Yu G, Cao A, Lieber CM (2007) Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotechnol 2(6):372–377

    Article  Google Scholar 

  21. Liu M et al (2011) Controllable positioning and alignment of silver nanowires by tunable hydrodynamic focusing. Nanotechnology 22(12):125302

    Article  Google Scholar 

  22. Mingotaud C, Agricole B, Jego C (1995) In-plane orientation of molecules in Langmuir and Langmuir-Blodgett films by shearing. J Phys Chem 99(47):17068–17070

    Article  Google Scholar 

  23. Petkov JT et al (1996) Precise method for measuring the shear surface viscosity of surfactant monolayers. Langmuir 12(11):2650–2653

    Article  Google Scholar 

  24. Zhu R et al (2014) Scalable alignment and transfer of nanowires in a spinning Langmuir film. Nanoscale 6(20):11976–11980

    Article  Google Scholar 

  25. Abraham BM et al (1983) Centro symmetric technique for measuring shear modulus, viscosity, and surface tension of spread monolayers. Rev Sci Instrum 54(2):213–219

    Article  Google Scholar 

  26. Zhu R, Lu Z, Wei Y (1996) A new method for uniform compressing of Langmuir monolayers. Thin Solid Films 284-285:43–45

    Article  Google Scholar 

  27. Agarwal G, Phadke RS (1998) Deposition of Langmuir monolayers using conical trough. Thin Solid Films 327-329:9–13

    Article  Google Scholar 

  28. Xu S et al (2008) Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J Mater Res 23(8):2072–2077

    Article  Google Scholar 

  29. Reches M, Gazit E (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotechnol 1(3):195–200

    Article  Google Scholar 

  30. Moon GD et al (2011) Assembled monolayers of hydrophilic particles on water surfaces. ACS Nano 5(11):8600–8612

    Article  MathSciNet  Google Scholar 

  31. Shanahan MER (1995) Simple theory of “stick-slip” wetting hysteresis. Langmuir 11(3):1041–1043

    Article  Google Scholar 

  32. Johnson RE, Dettre RH (1964) Contact angle hysteresis. In: Fowkes FM (ed) Contact angle, wettability, and adhesion. American Chemical Society, Washington, DC, pp 112–135

    Chapter  Google Scholar 

  33. Johnson RE, Dettre RH (1964) Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J Phys Chem 68(7):1744–1750

    Article  Google Scholar 

  34. Krupenkin T, Yang S, Mach P (2003) Tunable liquid microlens. Appl Phys Lett 82(3):316–318

    Article  Google Scholar 

  35. Smith JD et al (2013) Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9(6):1772–1780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, R., Yang, R. (2018). Alignment and Transfer of Nanowires in a Spinning Langmuir Film. In: Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-70038-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70038-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70036-6

  • Online ISBN: 978-3-319-70038-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics