Skip to main content

Generator Platform of Benchmark Time-Lapsed Images Development of Cell Tracking Algorithms: Implementation of New Features Towards a Realistic Simulation of the Cell Spatial and Temporal Organization

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2016)

Abstract

Recent developments in live-cell microscopy imaging have led to the emergence of Single Cell Biology. This field has also been supported by the development of cell segmentation and tracking algorithms for data extraction. The validation of these algorithms requires benchmark databases, with manually labeled or artificially generated images, so that the ground truth is known. To generate realistic artificial images, we have developed a simulation platform capable of generating biologically inspired objects with various shapes and size, which are able to grow, divide, move and form specific clusters. Using this platform, we compared four tracking algorithms: Simple Nearest-Neighbor (NN), NN with Morphology (NNm) and two DBSCAN-based methodologies. We show that Simple NN performs well on objects with small velocities, while the others perform better for higher velocities and when objects form clusters. This platform for benchmark images generation and image analysis algorithms testing is openly available at (http://griduni.uninova.pt/Clustergen/ClusterGen_v1.0.zip).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Tool available at: http://griduni.uninova.pt/Clustergen/ ClusterGen_v1.0.zip.

References

  1. Danuser, G.: Computer vision in cell biology. Cell 147, 973–978 (2011)

    Article  Google Scholar 

  2. Sung, M.-H., McNally, J.G.: Live cell imaging and systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 167–182 (2011)

    Article  Google Scholar 

  3. Coutu, D.L., Schroeder, T.: Probing cellular processes by long-term live imaging–historic problems and current solutions. J. Cell Sci. 126, 3805–3815 (2013)

    Article  Google Scholar 

  4. Bonnet, N.: Some trends in microscope image processing. Micron 35, 635–653 (2004)

    Article  Google Scholar 

  5. Frigault, M., Lacoste, J., Swift, J., Brown, C.: Live-cell microscopy - tips and tools. J. Cell Sci. 122, 753–767 (2009)

    Article  Google Scholar 

  6. Deshmukh, M., Bhosle, U.: A survey of image registration. Int. J. Image Process. 5, 245–269 (2011)

    Google Scholar 

  7. Wyawahare, M., Patil, P., Abhyankar, H.: Image registration techniques: an overview. Int. J. Signal Process. Image Process Pattern Recognit. 2, 11–28 (2009)

    Google Scholar 

  8. Meijering, E.: Cell segmentation: 50 years down the road. IEEE Sig. Process. Mag. 29, 140–145 (2012)

    Article  Google Scholar 

  9. Tissainayagam, P., Suter, D.: Object tracking in image sequences using point features. Pattern Recognit. 38, 105–113 (2005)

    Article  Google Scholar 

  10. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 1–45 (2006)

    Article  Google Scholar 

  11. Selinummi, J., Seppälä, J., Yli-Harja, O., Puhakka, J.: Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques 39, 859–863 (2005)

    Article  Google Scholar 

  12. Wang, Q., Niemi, J., Tan, C.-M., You, L., West, M.: Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy. Cytom. A. 77, 101–110 (2010)

    Google Scholar 

  13. Sliusarenko, O., Heinritz, J.: High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol. Microbiol. 80, 612–627 (2011)

    Article  Google Scholar 

  14. Young, J., Locke, J.C.W., Altinok, A., Rosenfeld, N., Bacarian, T., Swain, P.S., Mjolsness, E., Elowitz, M.B.: Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat. Protoc. 7, 80–88 (2012)

    Article  Google Scholar 

  15. Häkkinen, A., Muthukrishnan, A.-B., Mora, A., Fonseca, J.M., Ribeiro, A.S.: Cell Aging: a tool to study segregation and partitioning in division in cell lineages of Escherichia coli. Bioinformatics 29, 1708–1709 (2013)

    Article  Google Scholar 

  16. Coelho, L.P., Shariff, A., Murphy, R.F.: Nuclear segmentation in microscope cell images a hand-segmented dataset and comparison of algorithms. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 518–521 (2009)

    Google Scholar 

  17. Xiong, W., Wang, Y., Ong, S.H., Lim, J.H., Jiang, L.: Learning cell geometry models for cell image simulation : an unbiased approach. In: Proceedings of 2010 IEEE 17th International Conference on Image Processing, pp. 1897–1900 (2010)

    Google Scholar 

  18. Kruse, K.: Bacterial organization in space and time. In: Comprehensive Biophysics, pp. 208–221 (2012)

    Google Scholar 

  19. Misteli, T.: Beyond the sequence: cellular organization of genome function. Cell 128, 787–800 (2007)

    Article  Google Scholar 

  20. Svoboda, D., Kozubek, M., Stejskal, S.: Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry. A. 75, 494–509 (2009)

    Article  Google Scholar 

  21. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Med. Imag. 26, 1010–1016 (2007)

    Article  Google Scholar 

  22. Ruusuvuori, P., Lehmussola, A., Selinummi, J., Rajala, T., Huttunen, H., Yli-Harja, O.: Benchmark set of synthetic images for validating cell image analysis algorithms. In: Proceedings of the 16th European Signal Processing Conference, EUSIPCO (2008)

    Google Scholar 

  23. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Rajala, T., Yli-harja, O.: Synthetic images of high-throughput microscopy for validation of image analysis methods. Proc. IEEE 96, 1348–1360 (2011)

    Article  Google Scholar 

  24. Svoboda, D., Kasik, M., Maska, M., Hubeny, J.: On simulating 3D fluorescent microscope images. In: Proceedings of 12th International Conference on Computer Analysis of Images and Patterns, CAIP 2007, Vienna, Austria, 27–29 August 2007, pp. 309–316 (2007)

    Google Scholar 

  25. Ulman, V., Oremus, Z., Svoboda, D.: TRAgen: a tool for generation of synthetic time-lapse image sequences of living cells. In: Proceedings of 18th International Conference on Image Analysis and Processing (ICIAP 2015), pp. 623–634. Springer (2015)

    Google Scholar 

  26. Satwik, R., Benjamin, P., Nicholas, H., Steven, A., Lani, W.: SimuCell: a flexible framework for creating synthetic microscopy images a PhenoRipper: software for rapidly profiling microscopy images. Nat. Meth. 9, 634–636 (2012)

    Article  Google Scholar 

  27. Murphy, R.: Cell Organizer: image-derived models of subcellular organization and protein distribution. Meth. Cell Biol. 110, 179–193 (2012)

    Article  Google Scholar 

  28. Zhao, T., Murphy, R.F.: Automated learning of generative models for subcellular location: building blocks for systems biology. Cytometry. A. 71, 978–990 (2007)

    Article  Google Scholar 

  29. Martins, L., Fonseca, J., Ribeiro, A.: “miSimBa” - a simulator of synthetic time-lapsed microscopy images of bacterial cells. In: Proceedings of 2015 IEEE 4th Portuguese Meeting on Bioengineering, ENBENG 2015, pp. 1–6 (2015)

    Google Scholar 

  30. Gotelli, N.J., McGill, B.J.: Null versus neutral models: what’s the difference? Ecography (Cop.) 29, 793–800 (1996)

    Article  Google Scholar 

  31. Elfring, J., Janssen, R., van de Molengraft, R.: Data association and tracking: a literature survey. In: ICT Call 4 RoboEarth Project (2010)

    Google Scholar 

  32. Gu, S., Zheng, Y., Tomasi, C.: Efficient visual object tracking with online nearest neighbor classifier. In: Computer Vision – ACCV 2010. LNCS, vol. 6492, pp. 271–282 (2011)

    Google Scholar 

  33. Gorji, A., Menhaj, M.B.: Multiple target tracking for mobile robots using the JPDAF algorithm. In: 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), pp. 137–145 (2007)

    Google Scholar 

  34. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Radar Sig. Process. IEE Proc. F. 140, 107–113 (1993)

    Article  Google Scholar 

  35. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by probability distributions. Bull. Calcutta Math. Soc. 35, 99–110 (1943)

    MATH  MathSciNet  Google Scholar 

  36. Joyce, J.: Kullback-Leibler Divergence. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science SE - 327, pp. 720–722. Springer, Heidelberg (2014)

    Google Scholar 

  37. Zhou, H., Yuan, Y., Shi, C.: Object tracking using SIFT features and mean shift. Comput. Vis. Image Underst. 113, 345–352 (2009)

    Article  Google Scholar 

  38. Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Computer Society Conference on CVPR 1994, pp. 593–600. IEEE (1994)

    Google Scholar 

  39. Cabeen, M.T., Jacobs-Wagner, C.: Bacterial cell shape. Nat. Rev. Microbiol. 3, 601–610 (2005)

    Article  Google Scholar 

  40. Salton, M., Kim, K.: Structure. In: Baron, S. (ed.) Medical Microbiology, 4th edn., Chap. 2. University of Texas Medical Branch at Galveston, Galveston (1996)

    Google Scholar 

  41. Zinder, S.H., Dworkin, M.: Morphological and physiological diversity. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (eds.) Prokaryotes, Chap. 1.7, pp. 185–220. Springer, New York (2006)

    Google Scholar 

  42. Koch, A.L.: What size should a bacterium be? A question of scale. Annu. Rev. Microbiol. 50, 317–348 (1996)

    Article  Google Scholar 

  43. Höltje, J.-V.: Cell walls, bacterial. In: The Desk Encyclopedia of Microbiology, pp. 239–250 (2004)

    Google Scholar 

  44. Henning, U., Rehn, K., Hoehn, B.: Cell envelope and shape of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 70, 2033–2036 (1973)

    Article  Google Scholar 

  45. Carballido-López, R., Formstone, A.: Shape determination in Bacillus subtilis. Curr. Opin. Microbiol. 10, 611–616 (2007)

    Article  Google Scholar 

  46. Höltje, J.-V.: Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181–203 (1998)

    Google Scholar 

  47. Huang, K.C., Mukhopadhyay, R., Wen, B., Gitai, Z., Wingreen, N.S.: Cell shape and cell-wall organization in Gram-negative bacteria. Proc. Natl. Acad. Sci. U.S.A. 105, 19282–19287 (2008)

    Article  Google Scholar 

  48. Canelas, P., Martins, L., Mora, A., Ribeiro, A.S., Fonseca, J.: An image generator platform to improve cell tracking algorithms - simulation of objects of various morphologies, kinetics and clustering. In: Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 44–55 (2016). ISBN 978-989-758-199-1

    Google Scholar 

  49. Wang, J.D., Levin, P.A.: Metabolism, cell growth and the bacterial cell cycle. Nat. Rev. Microbiol. 7, 822–827 (2009)

    Article  Google Scholar 

  50. Young, K.D.: Bacterial shape: two-dimensional questions and possibilities. Annu. Rev. Microbiol. 64, 223–240 (2010)

    Article  Google Scholar 

  51. Zapun, A., Vernet, T., Pinho, M.: The different shapes of cocci. FEMS Microbiol. Rev. 32, 345–360 (2008)

    Article  Google Scholar 

  52. Lauffenburger, D.: Effects of cell motility and chemotaxis on microbial population growth. Biophys. J. 40, 209–219 (1982)

    Article  Google Scholar 

  53. Czink, N., Mecklenbräuker, C., Del Galdo, G.: A novel automatic cluster tracking algorithm. In: 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, pp. 1–5 (2006)

    Google Scholar 

  54. Tran, T.N., Drab, K., Daszykowski, M.: Revised DBSCAN algorithm to cluster data with dense adjacent clusters. Chemom. Intell. Lab. Syst. 120, 92–96 (2013)

    Article  Google Scholar 

  55. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

Download references

Acknowledgments

Work supported by the Portuguese Foundation for Science and Technology (FCT/MCTES) through a PhD Scholarship, ref. SFRH/BD/88987/2012 to LM, SADAC project (ref. PTDC/BBB-MET/1084/2012) and by FCT Strategic Program UID/EEA/00066/203 of UNINOVA, CTS. This work is also funded by the Academy of Finland [refs. 295027 and 305342 to ASR] and the Jane and Aatos Erkko Foundation [ref. 5-3416-12 to ASR].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Martins, L., Canelas, P., Mora, A., Ribeiro, A.S., Fonseca, J. (2018). Generator Platform of Benchmark Time-Lapsed Images Development of Cell Tracking Algorithms: Implementation of New Features Towards a Realistic Simulation of the Cell Spatial and Temporal Organization. In: Obaidat, M., Ören, T., Merkuryev, Y. (eds) Simulation and Modeling Methodologies, Technologies and Applications. SIMULTECH 2016. Advances in Intelligent Systems and Computing, vol 676. Springer, Cham. https://doi.org/10.1007/978-3-319-69832-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69832-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69831-1

  • Online ISBN: 978-3-319-69832-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics