Skip to main content

Comparative View of Lung Vascular Endothelium of Cattle, Horses, and Water Buffalo

  • Chapter
  • First Online:
Molecular and Functional Insights Into the Pulmonary Vasculature

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 228))

Abstract

Endothelium plays an important role in maintaining the vascular barrier and physiological homeostasis. Endothelium also is fundamental to the initiation and regulation of inflammation. Endothelium demonstrates phenotypic and functional heterogeneity not only among various organs but also within an organ. One of the striking examples would be the pulmonary endothelium that participates in creating blood–air barrier. Endothelium in large pulmonary blood vessels is distinct in structure and function from that lining of the pulmonary capillaries. This chapter focuses on the comparative aspects of pulmonary endothelium and highlight unique differences such as the presence of pulmonary intravascular macrophages among select species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdi K, Kobzik L, Li X, Mentzer SJ (1995) Expression of membrane glycoconjugates on sheep lung endothelium. Lab Invest 72(4):445–452

    CAS  PubMed  Google Scholar 

  • Aderem A (2001) Role of Toll-like receptors in inflammatory response in macrophages. Crit Care Med 29(7 Suppl):S16–S18

    Article  CAS  PubMed  Google Scholar 

  • Aharonson-Raz K, Lohmann KL, Townsend HG, Marques F, Singh B (2012) Pulmonary intravascular macrophages as proinflammatory cells in heaves, an asthma-like equine disease. Am J Physiol Lung Cell Mol Physiol 303(3):L189–L198. https://doi.org/10.1152/ajplung.00271.2011

    Article  CAS  PubMed  Google Scholar 

  • Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI (2006) Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99(9):988–995. https://doi.org/10.1161/01.RES.0000247065.11756.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andonegui G, Goyert SM, Kubes P (2002) Lipopolysaccharide-induced leukocyte-endothelial cell interactions: a role for CD14 versus toll-like receptor 4 within microvessels. J Immunol 169(4):2111–2119

    Article  CAS  PubMed  Google Scholar 

  • Andonegui G, Bonder CS, Green F, Mullaly SC, Zbytnuik L, Raharjo E, Kubes P (2003) Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest 111(7):1011–1020. https://doi.org/10.1172/JCI16510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atwal OS, Saldanha KA (1985) Erythrophagocytosis in alveolar capillaries of goat lung: ultrastructural properties of blood monocytes. Acta Anat (Basel) 124(3-4):245–254

    Article  CAS  Google Scholar 

  • Atwal OS, Singh B, Staempfli H, Minhas K (1992) Presence of pulmonary intravascular macrophages in the equine lung: some structuro-functional properties. Anat Rec 234(4):530–540. https://doi.org/10.1002/ar.1092340408

    Article  CAS  PubMed  Google Scholar 

  • Balachandran Y, Knaus S, Caldwell S, Singh B (2015) Toll-like receptor 10 expression in chicken, cattle, pig, dog, and rat lungs. Vet Immunol Immunopathol 168(3-4):184–192. https://doi.org/10.1016/j.vetimm.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  • Bauer S, Wagner H (2002) Bacterial CpG-DNA licenses TLR9. Curr Top Microbiol Immunol 270:145–154

    CAS  PubMed  Google Scholar 

  • Birch KA, Pober JS, Zavoico GB, Means AR, Ewenstein BM (1992) Calcium/calmodulin transduces thrombin-stimulated secretion: studies in intact and minimally permeabilized human umbilical vein endothelial cells. J Cell Biol 118(6):1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Birch KA, Ewenstein BM, Golan DE, Pober JS (1994) Prolonged peak elevations in cytoplasmic free calcium ions, derived from intracellular stores, correlate with the extent of thrombin-stimulated exocytosis in single human umbilical vein endothelial cells. J Cell Physiol 160(3):545–554. https://doi.org/10.1002/jcp.1041600318

    Article  CAS  PubMed  Google Scholar 

  • Birks EK, Mathieu-Costello O, Fu Z, Tyler WS, West JB (1994) Comparative aspects of the strength of pulmonary capillaries in rabbit, dog, and horse. Respir Physiol 97(2):235–246

    Article  CAS  PubMed  Google Scholar 

  • Birks EK, Mathieu-Costello O, Fu Z, Tyler WS, West JB (1997) Very high pressures are required to cause stress failure of pulmonary capillaries in thoroughbred racehorses. J Appl Physiol (1985) 82(5):1584–1592

    Article  CAS  Google Scholar 

  • Bochsler PN, Slauson DO, Chandler SK, Suyemoto MM (1989) Isolation and characterization of equine microvascular endothelial cells in vitro. Am J Vet Res 50(10):1800–1805

    CAS  PubMed  Google Scholar 

  • Bonfanti R, Furie BC, Furie B, Wagner DD (1989) PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood 73(5):1109–1112

    CAS  PubMed  Google Scholar 

  • Chuang T, Ulevitch RJ (2001) Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 1518(1-2):157–161

    Article  CAS  PubMed  Google Scholar 

  • Chung-Welch N, Shepro D, Dunham B, Hechtman HB (1988) Prostacyclin and prostaglandin E2 secretions by bovine pulmonary microvessel endothelial cells are altered by changes in culture conditions. J Cell Physiol 135(2):224–234. https://doi.org/10.1002/jcp.1041350209

    Article  CAS  PubMed  Google Scholar 

  • Cioffi DL, Moore TM, Schaack J, Creighton JR, Cooper DM, Stevens T (2002) Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase. J Cell Biol 157(7):1267–1278. https://doi.org/10.1083/jcb.200204022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cioffi DL, Lowe K, Alvarez DF, Barry C, Stevens T (2009) TRPing on the lung endothelium: calcium channels that regulate barrier function. Antioxid Redox Signal 11(4):765–776. https://doi.org/10.1089/ARS.2008.2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costello ML, Mathieu-Costello O, West JB (1992) Stress failure of alveolar epithelial cells studied by scanning electron microscopy. Am Rev Respir Dis 145(6):1446–1455. https://doi.org/10.1164/ajrccm/145.6.1446

    Article  CAS  PubMed  Google Scholar 

  • Cotran RS (1989) Endothelial cells. Textbook of rheumatology, 3rd edn. WB Saunders, Philadelphila, PA

    Google Scholar 

  • Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER (1982) Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 126(2):332–337. https://doi.org/10.1164/arrd.1982.126.2.332

    CAS  PubMed  Google Scholar 

  • Crapo JD, Young SL, Fram EK, Pinkerton KE, Barry BE, Crapo RO (1983) Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis 128(2 Pt 2):S42–S46. https://doi.org/10.1164/arrd.1983.128.2P2.S42

    CAS  PubMed  Google Scholar 

  • Demiryurek AT, Wadsworth RM, Kane KA (1991) Effects of hypoxia on isolated intrapulmonary arteries from the sheep. Pulm Pharmacol 4(3):158–164

    Article  CAS  PubMed  Google Scholar 

  • Demiryurek AT, Wadsworth RM, Kane KA, Peacock AJ (1993) The role of endothelium in hypoxic constriction of human pulmonary artery rings. Am Rev Respir Dis 147(2):283–290. https://doi.org/10.1164/ajrccm/147.2.283

    Article  CAS  PubMed  Google Scholar 

  • Dornan JC, Meban C (1985) The capillary plexus in the gas exchange zone of human neonatal lung: an ultrastructural study. Thorax 40(10):787–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan K, FitzGerald GA (2006) Eicosanoids and the vascular endothelium. Handb Exp Pharmacol 176 Pt 1:189–211

    Article  Google Scholar 

  • Elliott AR, Fu Z, Tsukimoto K, Prediletto R, Mathieu-Costello O, West JB (1992) Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure. J Appl Physiol (1985) 73(3):1150–1158

    Article  CAS  Google Scholar 

  • Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, Polentarutti N, Muzio M, Arditi M (2000) Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275(15):11058–11063

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Costello ML, Tsukimoto K, Prediletto R, Elliott AR, Mathieu-Costello O, West JB (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol (1985) 73(1):123–133

    Article  CAS  Google Scholar 

  • Fuchs A, Weibel ER (1966) Morphometric study of the distribution of a specific cytoplasmatic organoid in the rat’s endothelial cells. Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria: 1948) 73(1):1–9

    Article  CAS  Google Scholar 

  • Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3(9):2007–2018

    CAS  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JR, Tyler WS (1967) Quantitative electron microscopy of the interalveolar septa of the horse lung. Am Rev Respir Dis 95(3):477–483. https://doi.org/10.1164/arrd.1967.95.3.477

    CAS  PubMed  Google Scholar 

  • Heltianu C, Simionescu M, Simionescu N (1982) Histamine receptors of the microvascular endothelium revealed in situ with a histamine-ferritin conjugate: characteristic high-affinity binding sites in venules. J Cell Biol 93(2):357–364

    Article  CAS  PubMed  Google Scholar 

  • Jian MY, King JA, Al-Mehdi AB, Liedtke W, Townsley MI (2008) High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am J Respir Cell Mol Biol 38(4):386–392. https://doi.org/10.1165/rcmb.2007-0192OC

    Article  CAS  PubMed  Google Scholar 

  • Kaiser L, Sparks HV Jr (1986) Mediation of flow-dependent arterial dilation by endothelial cells. Circ Shock 18(2):109–114

    CAS  PubMed  Google Scholar 

  • Kelly JJ, Moore TM, Babal P, Diwan AH, Stevens T, Thompson WJ (1998) Pulmonary microvascular and macrovascular endothelial cells: differential regulation of Ca2+ and permeability. Am J Physiol 274(5 Pt 1):L810–L819

    CAS  PubMed  Google Scholar 

  • Kim D, Kim YJ, Koh HS, Jang TY, Park HE, Kim JY (2010) Reactive oxygen species enhance TLR10 expression in the human monocytic cell line THP-1. Int J Mol Sci 11(10):3769–3782. https://doi.org/10.3390/ijms11103769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindig CA, Erickson HH, Poole DC (2000) Dissociation of exercise-induced pulmonary hemorrhage and pulmonary artery pressure via nitric oxide synthase inhibition. J Equine Vet Sci 20(11):715–721. https://doi.org/10.1016/S0737-0806(00)80182-3

    Article  Google Scholar 

  • King J, Hamil T, Creighton J, Wu S, Bhat P, McDonald F, Stevens T (2004) Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res 67(2):139–151. https://doi.org/10.1016/j.mvr.2003.11.006

    Article  CAS  PubMed  Google Scholar 

  • Koller A, Sun D, Huang A, Kaley G (1994) Corelease of nitric oxide and prostaglandins mediates flow-dependent dilation of rat gracilis muscle arterioles. Am J Physiol 267(1 Pt 2):H326–H332

    CAS  PubMed  Google Scholar 

  • Krogmann AO, Lusebrink E, Steinmetz M, Asdonk T, Lahrmann C, Lutjohann D, Nickenig G, Zimmer S (2016) Proinflammatory stimulation of Toll-like receptor 9 with high dose CpG ODN 1826 impairs endothelial regeneration and promotes atherosclerosis in mice. PLoS One 11(1):e0146326. https://doi.org/10.1371/journal.pone.0146326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuebler WM, Ying X, Singh B, Issekutz AC, Bhattacharya J (1999) Pressure is proinflammatory in lung venular capillaries. J Clin Invest 104(4):495–502. https://doi.org/10.1172/JCI6872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamar CH, Turek JJ, Bottoms GD, Fessler JF (1986) Equine endothelial cells in vitro. Am J Vet Res 47(4):956–958

    CAS  PubMed  Google Scholar 

  • Lorant DE, Patel KD, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA (1991) Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol 115(1):223–234

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein CJ, Morrell CN, Yamakuchi M (2005) Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med 15(8):302–308. https://doi.org/10.1016/j.tcm.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  • Ludwig MG, Seuwen K (2002) Characterization of the human adenylyl cyclase gene family: cDNA, gene structure, and tissue distribution of the nine isoforms. J Recept Signal Transduct Res 22(1-4):79–110. https://doi.org/10.1081/RRS-120014589

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JM, Martling CR, Hökfelt T (1988) Airways, oral cavity and salivary glands: classical transmitters and peptides in sensory and autonomic motor neurons. In: Björklund A, Hökfelt T, Owman C (eds) Handbook of chemical neuroanatomy, vol 6. Elsevier Science, New York, NY, pp 391–444

    Google Scholar 

  • Lymboussaki A, Partanen TA, Olofsson B, Thomas-Crusells J, Fletcher CD, de Waal RM, Kaipainen A, Alitalo K (1998) Expression of the vascular endothelial growth factor C receptor VEGFR-3 in lymphatic endothelium of the skin and in vascular tumors. Am J Pathol 153(2):395–403. https://doi.org/10.1016/S0002-9440(10)65583-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacEachern KE, Smith GL, Nolan AM (1997) Methods for the isolation, culture and characterisation of equine pulmonary artery endothelial cells. Res Vet Sci 62(2):147–152

    Article  CAS  PubMed  Google Scholar 

  • MacEachern KE, Smith GL, Nolan AM (2004) Characteristics of the in vitro hypoxic pulmonary vasoconstrictor response in isolated equine and bovine pulmonary arterial rings. Vet Anaesth Analg 31(4):239–249. https://doi.org/10.1111/j.1467-2995.2004.00176.x

    Article  CAS  PubMed  Google Scholar 

  • Magee JC, Stone AE, Oldham KT, Guice KS (1994) Isolation, culture, and characterization of rat lung microvascular endothelial cells. Am J Physiol 267(4 Pt 1):L433–L441

    CAS  PubMed  Google Scholar 

  • Mantovani A, Bussolino F, Dejana E (1992) Cytokine regulation of endothelial cell function. FASEB J 6(8):2591–2599

    CAS  PubMed  Google Scholar 

  • Marchesi VT (1961) The site of leucocyte emigration during inflammation. Q J Exp Physiol Cogn Med Sci 46:115–118

    CAS  PubMed  Google Scholar 

  • Michel RP, Hu F, Meyrick BO (1995) Myoendothelial junctional complexes in postobstructive pulmonary vasculopathy: a quantitative electron microscopic study. Exp Lung Res 21(3):437–452

    Article  CAS  PubMed  Google Scholar 

  • Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG (2016) The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax 71(5):462–473. https://doi.org/10.1136/thoraxjnl-2015-207461

    Article  PubMed  Google Scholar 

  • Minami T, Sugiyama A, Wu SQ, Abid R, Kodama T, Aird WC (2004) Thrombin and phenotypic modulation of the endothelium. Arterioscler Thromb Vasc Biol 24(1):41–53. https://doi.org/10.1161/01.ATV.0000099880.09014.7D

    Article  CAS  PubMed  Google Scholar 

  • Muller AM, Nesslinger M, Skipka G, Muller KM (2002) Expression of CD34 in pulmonary endothelial cells in vivo. Pathobiology 70(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Nishi Y, Kitamura N, Otani M, Hondo E, Taguchi K, Yamada J (2000) Distribution of capsaicin-sensitive substance P- and calcitonin gene-related peptide-immunoreactive nerves in bovine respiratory tract. Ann Anat 182(4):319–326. https://doi.org/10.1016/S0940-9602(00)80004-7

    Article  CAS  PubMed  Google Scholar 

  • Ochoa CD, Wu S, Stevens T (2010) New developments in lung endothelial heterogeneity: Von Willebrand factor, P-selectin, and the Weibel-Palade body. Semin Thromb Hemost 36(3):301–308. https://doi.org/10.1055/s-0030-1253452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ofori-Acquah SF, King J, Voelkel N, Schaphorst KL, Stevens T (2008) Heterogeneity of barrier function in the lung reflects diversity in endothelial cell junctions. Microvasc Res 75(3):391–402. https://doi.org/10.1016/j.mvr.2007.10.006

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Xia L, McEver RP (1998) Comparison of promoters for the murine and human P-selectin genes suggests species-specific and conserved mechanisms for transcriptional regulation in endothelial cells. J Biol Chem 273(16):10058–10067

    Article  CAS  PubMed  Google Scholar 

  • Parbhakar OP, Duke T, Townsend HG, Singh B (2005) Depletion of pulmonary intravascular macrophages partially inhibits lipopolysaccharide-induced lung inflammation in horses. Vet Res 36(4):557–569. https://doi.org/10.1051/vetres:2005016

    Article  PubMed  Google Scholar 

  • Parker JC, Yoshikawa S (2002) Vascular segmental permeabilities at high peak inflation pressure in isolated rat lungs. Am J Physiol Lung Cell Mol Physiol 283(6):L1203–L1209. https://doi.org/10.1152/ajplung.00488.2001

    Article  CAS  PubMed  Google Scholar 

  • Parker JC, Stevens T, Randall J, Weber DS, King JA (2006) Hydraulic conductance of pulmonary microvascular and macrovascular endothelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 291(1):L30–L37. https://doi.org/10.1152/ajplung.00317.2005

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathi K, Ichimura H, Monma E, Lindert J, Quadri S, Issekutz A, Bhattacharya J (2006) Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J Clin Invest 116(8):2193–2200. https://doi.org/10.1172/JCI26605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoe JR, Ferraro GL, Cannon JH, Arthur RM, Wheat JD (1981) Exercise-induced pulmonary hemorrhage in racing thoroughbreds: a preliminary study. Am J Vet Res 42(5):703–707

    CAS  PubMed  Google Scholar 

  • Pelletier N, Leith DE (1993) Cardiac output but not high pulmonary artery pressure varies with FIO2 in exercising horses. Respir Physiol 91(1):83–97

    Article  CAS  PubMed  Google Scholar 

  • Pober JS, Cotran RS (1990) Cytokines and endothelial cell biology. Physiol Rev 70(2):427–451

    Article  CAS  PubMed  Google Scholar 

  • Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815. https://doi.org/10.1038/nri2171

    Article  CAS  PubMed  Google Scholar 

  • Prasain N, Stevens T (2009) The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 77(1):53–63. https://doi.org/10.1016/j.mvr.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  • Prescott SM, Zimmerman GA, McIntyre TM (1984) Human endothelial cells in culture produce platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when stimulated with thrombin. Proc Natl Acad Sci U S A 81(11):3534–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees DD, Palmer RM, Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 86(9):3375–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayner S, Stevens T (2006) Soluble adenylate cyclase reveals the significance of compartmentalized cAMP on endothelial cell barrier function. Biochem Soc Trans 34(Pt 4):492–494. https://doi.org/10.1042/BST0340492

    Article  CAS  PubMed  Google Scholar 

  • Sayner SL, Alexeyev M, Dessauer CW, Stevens T (2006) Soluble adenylyl cyclase reveals the significance of cAMP compartmentation on pulmonary microvascular endothelial cell barrier. Circ Res 98(5):675–681. https://doi.org/10.1161/01.RES.0000209516.84815.3e

    Article  CAS  PubMed  Google Scholar 

  • Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA (2002) CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 3(2):143–150. https://doi.org/10.1038/ni749

    Article  CAS  PubMed  Google Scholar 

  • Schneberger D, Caldwell S, Suri SS, Singh B (2009) Expression of toll-like receptor 9 in horse lungs. Anat Rec (Hoboken) 292(7):1068–1077. https://doi.org/10.1002/ar.20927

    Article  CAS  Google Scholar 

  • Schneberger D, Lewis D, Caldwell S, Singh B (2011) Expression of toll-like receptor 9 in lungs of pigs, dogs and cattle. Int J Exp Pathol 92(1):1–7. https://doi.org/10.1111/j.1365-2613.2010.00742.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneberger D, Aharonson-Raz K, Singh B (2012) Pulmonary intravascular macrophages and lung health: what are we missing? Am J Physiol Lung Cell Mol Physiol 302(6):L498–L503. https://doi.org/10.1152/ajplung.00322.2011

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger EE (1982) Structure of intercellular junctions in different segments of the intrapulmonary vasculature. Ann N Y Acad Sci 384:54–63

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE, Siflinger-Birnboim A, Del Vecchio PJ, Malik AB (1994) Segmental differentiation of permeability, protein glycosylation, and morphology of cultured bovine lung vascular endothelium. Biochem Biophys Res Commun 199(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Sessa WC (2004) eNOS at a glance. J Cell Sci 117(Pt 12):2427–2429. https://doi.org/10.1242/jcs.01165

    Article  CAS  PubMed  Google Scholar 

  • Sethi RS, Brar RS, Singh O, Singh B (2011) Immunolocalization of pulmonary intravascular macrophages, TLR4, TLR9 and IL-8 in normal and Pasteurella multocida-infected lungs of water buffalo (Bubalus bubalis). J Comp Pathol 144(2–3):135–144. https://doi.org/10.1016/j.jcpa.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Atwal OS (1997) Ultrastructural and immunocytochemical study of the pulmonary intravascular macrophages of Escherichia coli lipopolysaccharide-treated sheep. Anat Rec 247(2):214–224

    Article  CAS  PubMed  Google Scholar 

  • Singh B, de la Concha-Bermejillo A (1998) Gadolinium chloride removes pulmonary intravascular macrophages and curtails the degree of ovine lentivirus-induced lymphoid interstitial pneumonia. Int J Exp Pathol 79(3):151–162

    CAS  PubMed  Google Scholar 

  • Singh B, Ireland WP, Minhas K, Atwal OS (1995) Surface coat of sheep pulmonary intravascular macrophages: reconstitution, and implication of a glycosyl-phosphatidylinositol anchor. Anat Rec 243(4):466–478. https://doi.org/10.1002/ar.1092430409

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Pearce JW, Gamage LN, Janardhan K, Caldwell S (2004) Depletion of pulmonary intravascular macrophages inhibits acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 286(2):L363–L372. https://doi.org/10.1152/ajplung.00003.2003

    Article  CAS  PubMed  Google Scholar 

  • Singh Suri S, Janardhan KS, Parbhakar O, Caldwell S, Appleyard G, Singh B (2006) Expression of toll-like receptor 4 and 2 in horse lungs. Vet Res 37(4):541–551. https://doi.org/10.1051/vetres:2006017

    Article  PubMed  CAS  Google Scholar 

  • Sirianni FE, Chu FS, Walker DC (2003) Human alveolar wall fibroblasts directly link epithelial type 2 cells to capillary endothelium. Am J Respir Crit Care Med 168(12):1532–1537. https://doi.org/10.1164/rccm.200303-371OC

    Article  PubMed  Google Scholar 

  • Stevens T, Nakahashi Y, Cornfield DN, McMurtry IF, Cooper DM, Rodman DM (1995) Ca(2+)-inhibitable adenylyl cyclase modulates pulmonary artery endothelial cell cAMP content and barrier function. Proc Natl Acad Sci U S A 92(7):2696–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376. https://doi.org/10.1146/annurev.immunol.21.120601.141126

    Article  CAS  PubMed  Google Scholar 

  • Townsley MI (2012) Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol 2(1):675–709. https://doi.org/10.1002/cphy.c100081

    PubMed  PubMed Central  Google Scholar 

  • Tsukimoto K, Mathieu-Costello O, Prediletto R, Elliott AR, West JB (1991) Ultrastructural appearances of pulmonary capillaries at high transmural pressures. J Appl Physiol (1985) 71(2):573–582

    Article  CAS  Google Scholar 

  • Turek JJ, Lamar CH, Fessler JF, Bottoms GD (1987) Ultrastructure of equine endothelial cells exposed to endotoxin and flunixin meglumine and equine neutrophils. Am J Vet Res 48(9):1363–1366

    CAS  PubMed  Google Scholar 

  • Vrolyk V, Wobeser BK, Al-Dissi AN, Carr A, Singh B (2017) Lung inflammation associated with clinical acute necrotizing pancreatitis in dogs. Vet Pathol 54(1):129–140. https://doi.org/10.1177/0300985816646432

  • Walker DC, MacKenzie A, Hosford S (1994) The structure of the tricellular region of endothelial tight junctions of pulmonary capillaries analyzed by freeze-fracture. Microvasc Res 48(3):259–281. https://doi.org/10.1006/mvre.1994.1054

    Article  CAS  PubMed  Google Scholar 

  • Walker DC, Behzad AR, Chu F (1995) Neutrophil migration through preexisting holes in the basal laminae of alveolar capillaries and epithelium during streptococcal pneumonia. Microvasc Res 50(3):397–416. https://doi.org/10.1006/mvre.1995.1067

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Eikenboom J (2010) Von Willebrand disease and Weibel-Palade bodies. Hamostaseologie 30(3):150–155

    PubMed  Google Scholar 

  • Wassef A, Janardhan K, Pearce JW, Singh B (2004) Toll-like receptor 4 in normal and inflamed lungs and other organs of pig, dog and cattle. Histol Histopathol 19(4):1201–1208

    CAS  PubMed  Google Scholar 

  • West JB (2000) Invited review: pulmonary capillary stress failure. J Appl Physiol (1985) 89(6):2483–2489. discussion 2497

    Article  CAS  Google Scholar 

  • West JB, Mathieu-Costello O, Jones JH, Birks EK, Logemann RB, Pascoe JR, Tyler WS (1993) Stress failure of pulmonary capillaries in racehorses with exercise-induced pulmonary hemorrhage. J Appl Physiol (1985) 75(3):1097–1109

    Article  CAS  Google Scholar 

  • Winkler GC (1988) Pulmonary intravascular macrophages in domestic animal species: review of structural and functional properties. Am J Anat 181(3):217–234. https://doi.org/10.1002/aja.1001810302

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Haynes J Jr, Taylor JT, Obiako BO, Stubbs JR, Li M, Stevens T (2003) Cav3.1 (alpha1G) T-type Ca2+ channels mediate vaso-occlusion of sickled erythrocytes in lung microcirculation. Circ Res 93(4):346–353. https://doi.org/10.1161/01.RES.0000087148.75363.8F

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Jian MY, Xu YC, Zhou C, Al-Mehdi AB, Liedtke W, Shin HS, Townsley MI (2009) Ca2+ entry via alpha1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol 297(4):L650–L657. https://doi.org/10.1152/ajplung.00015.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SF, Wang P, Liang ZX, Sun JP, Zhao XW, Li AM, Chen LA (2011) Investigation of inflammatory responses of pulmonary microvascular endothelial cells induced by lipopolysaccharide and mechanism. Zhonghua Jie He He Hu Xi Za Zhi 34(11):816–820

    PubMed  Google Scholar 

  • Yin J, Hoffmann J, Kaestle SM, Neye N, Wang L, Baeurle J, Liedtke W, Wu S, Kuppe H, Pries AR, Kuebler WM (2008) Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ Res 102(8):966–974. https://doi.org/10.1161/CIRCRESAHA.107.168724

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljit Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schneberger, D., Sethi, R.S., Singh, B. (2018). Comparative View of Lung Vascular Endothelium of Cattle, Horses, and Water Buffalo. In: Parthasarathi, K. (eds) Molecular and Functional Insights Into the Pulmonary Vasculature. Advances in Anatomy, Embryology and Cell Biology, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-68483-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68483-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68482-6

  • Online ISBN: 978-3-319-68483-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics