Skip to main content

Nanoclays for Biomedical Applications

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Clays are naturally occurring layered mineral materials that are low cost and environmentally friendly. Nanoclays are clay minerals with at least one dimension in the order of 1–100 nm. In nature, two forms of nanoclays, anionic and cationic clays, are present depending on the surface layered charge and the types of interlayer ions. Commonly found nanoclays in the literature are montmorillonite, kaolinite, laponite, halloysite, bentonite, hectorite, laponite, sepiolite, saponite, and vermiculite, among others. Nanoclays have been widely used as reinforcements for polymer matrix composites improving mechanical, thermal, and anticorrosion properties, for example. Due to being nontoxic, nanoclays and their composites have been studied for biomedical applications such as bone cement, tissue engineering, drug delivery, wound healing, and enzyme immobilization, among others. This chapter presents the state of the art of biomedical application of nanoclays and nanoclay-polymer matrix composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tesson S, Salanne M, Rotenberg B et al (2016) Classical polarizable force field for clays: pyrophyllite and talc. J Phys Chem C 120:3749–3758. https://doi.org/10.1021/acs.jpcc.5b10181

    Article  Google Scholar 

  2. Raji M, Mekhzoum MEM, Qaiss A el K, Bouhfid R (2016) Nanoclay modification and functionalization for nanocomposites development: effect on the structural, morphological, mechanical and rheological properties. In: Jawaid M, Qaiss A el K, Bouhfid R (eds) Nanoclay reinforced polymer composites: nanocomposites and bionanocomposites Springer, Singapore, pp 1–34

    Google Scholar 

  3. Paul DRR, Robeson LMM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017

    Article  Google Scholar 

  4. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001

    Article  Google Scholar 

  5. Nazir MS, Haafiz M, Kassim M et al (2016) Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: Essabir H, Raji M, Bouh R (eds) Nanoclay reinforced polymer composites. Springer, Singapore, pp 29–49

    Google Scholar 

  6. Uddin F (2008) Clays, nanoclays, and montmorillonite minerals. Metall Mater Trans A Phys Metall Mater Sci 39:2804–2814. https://doi.org/10.1007/s11661-008-9603-5

    Article  Google Scholar 

  7. Nguyen QT, Baird DG (2007) Preparation of polymer–clay nanocomposites and their properties. Adv Polym Technol 25:270–285. https://doi.org/10.1002/adv

    Article  Google Scholar 

  8. Ogawa M, Kuroda K (1995) Photofunctions of intercalation compounds. Chem Rev 95:399–438. https://doi.org/10.1021/cr00034a005

    Article  Google Scholar 

  9. Bisio C, Carniato F, Paul G et al (2011) One-pot synthesis and physicochemical properties of an organo-modified saponite clay. Langmuir 27:7250–7257

    Article  Google Scholar 

  10. Wicklein B, Darder M, Aranda P, Ruiz-Hitzky E (2010) Bio-organoclays based on phospholipids as immobilization hosts for biological species. Langmuir 26:5217–5225. https://doi.org/10.1021/la9036925

    Article  Google Scholar 

  11. Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1719. https://doi.org/10.1016/j.progpolymsci.2013.05.009

    Article  Google Scholar 

  12. Joussein E, Petit S, Churchman J et al (2005) Halloysite clay minerals – a review. Clay Miner 40:383–426. https://doi.org/10.1180/0009855054040180

    Article  Google Scholar 

  13. Jin YH, Park HJ, Im SS et al (2002) Polyethylene/clay nanocomposite by in-situ exfoliation of montmorillonite during Ziegler–Natta polymerization of ethylene. Macromol Rapid Commun 23:135–140. https://doi.org/10.1002/1521-3927(20020101)23:2<135::AID-MARC135>3.0.CO;2-T

    Article  Google Scholar 

  14. Brostow W, Dutta M, de Souza JR et al (2010) Nanocomposites of poly(methyl methacrylate) (PMMA) and montmorillonite (MMT) Brazilian clay: a tribological study. Express Polym Lett 4:570–575. https://doi.org/10.3144/expresspolymlett.2010.71

    Article  Google Scholar 

  15. Tyan H-L, Wu C-Y, Wei K-H (2001) Effect of montmorillonite on thermal and moisture absorption properties of polyimide of different chemical structures. J Appl Polym Sci 81:1742–1747. https://doi.org/10.1002/app.1606

    Article  Google Scholar 

  16. Li PR, Wei JC, Chiu YF et al (2010) Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl Mater Interfaces 2:1608–1613. https://doi.org/10.1021/am1001162

    Article  Google Scholar 

  17. Sánchez-Fernández A, Peña-Parás L, Vidaltamayo R et al (2014) Synthesization, characterization, and in vitro evaluation of cytotoxicity of biomaterials based on halloysite nanotubes. Materials 7:7770–7780. https://doi.org/10.3390/ma7127770

    Article  Google Scholar 

  18. Vergaro V, Abdullayev E, Lvov YM et al (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11:820–826. https://doi.org/10.1021/bm9014446

    Article  Google Scholar 

  19. Toledano-Magaña Y, Flores-Santos L, Montes De Oca G et al (2015) Effect of clinoptilolite and sepiolite nanoclays on human and parasitic highly phagocytic cells. Biomed Res Int 2015:164980. https://doi.org/10.1155/2015/164980

    Article  Google Scholar 

  20. Usmani MA, Khan I, Ahmad N et al (2016) Modification of nanoclay systems: an approach to explore various applications. In: Jawaid M, Qaiss A e K, Bouhfid R (eds) Nanoclay reinforced polymer composites: nanocomposites and bionanocomposites. Springer, Singapore, pp 29–49

    Google Scholar 

  21. Wu CJ, Gaharwar AK, Schexnailder PJ, Schmidt G (2010) Development of biomedical polymer–silicate nanocomposites: a materials science perspective. Materials 3:2986–3005. https://doi.org/10.3390/ma3052986

    Article  Google Scholar 

  22. Alakrach AM, Osman AF, Noriman NZ et al (2016) Thermal properties of ethyl vinyl acetate (EVA)/montmorillonite (MMT) nanocomposites for biomedical applications. MATEC Web Conf 78:1074. https://doi.org/10.1051/matecconf/20167801074

    Article  Google Scholar 

  23. Naffakh M, Diez-Pascual AM, Remskar M, Marco C (2012) New inorganic nanotube polymer nanocomposites: improved thermal, mechanical and tribological properties in isotactic polypropylene incorporating INT-MoS2. J Mater Chem 22:17002–17010. https://doi.org/10.1039/C2JM33422D

    Article  Google Scholar 

  24. Liu M, Huang J, Luo B, Zhou C (2015) Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. Int J Biol Macromol 78:23–31. https://doi.org/10.1016/j.ijbiomac.2015.03.059

    Article  Google Scholar 

  25. Blumstein A (1965) Polymerization of adsorbed monolayers. I. Preparation of the clay–polymer complex. J Polym Sci Part A Gen Pap 3:2653–2664. https://doi.org/10.1002/pol.1965.100030720

    Article  Google Scholar 

  26. Kanny K, Jawahar P, Moodley VK (2008) Mechanical and tribological behavior of clay–polypropylene nanocomposites. J Mater Sci 43:7230–7238. https://doi.org/10.1007/s10853-008-2938-x

    Article  Google Scholar 

  27. Kabiri K, Mirzadeh H, MJZ M (2007) Highly rapid preparation of a bio-modified nanoclay with chitosan. Iran Polym J 16:147–151

    Google Scholar 

  28. Ruiz-Hitzky E, Ariga K, Lvov Y (2008) Bio-inorganic hybrid nanomaterials: strategies, syntheses, characterization and applications. Wiley, Weinheim

    Google Scholar 

  29. Lu D, Chen H, Wu J, Chan CM (2011) Direct measurements of the Young’s modulus of a single halloysite nanotube using a transmission electron microscope with a bending stage. J Nanosci Nanotechnol 11:7789–7793. https://doi.org/10.1166/jnn.2011.4720

    Article  Google Scholar 

  30. Lecouvet B, Horion J, D’Haese C et al (2013) Elastic modulus of halloysite nanotubes. Nanotechnology 24:105704. https://doi.org/10.1088/0957-4484/24/10/105704

    Article  Google Scholar 

  31. Galimberti M (2012) Rubber clay nanocomposites. Adv Elastomers Technol Prop Appl. https://doi.org/10.5772/51410

    Google Scholar 

  32. Bathija AP (2019) Elastic properties of clays. Dissertation, Colorado School of Mines

    Google Scholar 

  33. Bonifacio MA, Gentile P, Ferreira AM et al (2017) Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydr Polym 163:280–291. https://doi.org/10.1016/j.carbpol.2017.01.064

    Article  Google Scholar 

  34. De Silva RT, Pasbakhsh P, Goh KL et al (2013) Physico-chemical characterisation of chitosan/halloysite composite membranes. Polym Test 32:265–271. https://doi.org/10.1016/j.polymertesting.2012.11.006

    Article  Google Scholar 

  35. Liu M, Zhang Y, Wu C et al (2012) Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol 51:566–575. https://doi.org/10.1016/j.ijbiomac.2012.06.022

    Article  Google Scholar 

  36. Luo C, Zou Z, Luo B et al (2016) Enhanced mechanical properties and cytocompatibility of electrospun poly(l-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes. Appl Surf Sci 369:82–91. https://doi.org/10.1016/j.apsusc.2016.02.048

    Article  Google Scholar 

  37. Bugatti V, Sorrentino A, Gorrasi G (2017) Encapsulation of lysozyme into halloysite nanotubes and dispersion in PLA: structural and physical properties and controlled release analysis. Eur Polym J 93:495–506. https://doi.org/10.1016/j.eurpolymj.2017.06.024

    Article  Google Scholar 

  38. Qi R, Guo R, Zheng F et al (2013) Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. Colloids Surf B Biointerfaces 110:148–155. https://doi.org/10.1016/j.colsurfb.2013.04.036

    Article  Google Scholar 

  39. Zhou WY, Guo B, Liu M et al (2010) Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. J Biomed Mater Res A 93:1574–1587. https://doi.org/10.1002/jbm.a.32656

    Article  Google Scholar 

  40. Carli LN, Crespo JS, Mauler RS (2011) PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties. Compos Part A Appl Sci Manuf 42:1601–1608. https://doi.org/10.1016/j.compositesa.2011.07.007

    Article  Google Scholar 

  41. Pal K (2016) Effect of different nanofillers on mechanical and dynamic behavior of PMMA based nanocomposites. Compos Commun 1:25–28. https://doi.org/10.1016/j.coco.2016.08.001

    Article  Google Scholar 

  42. Wei W, Abdullayev E, Hollister A et al (2012) Clay nanotube/poly(methyl methacrylate) bone cement composites with sustained antibiotic release. Macromol Mater Eng 297:645–653. https://doi.org/10.1002/mame.201100309

    Article  Google Scholar 

  43. Tu J, Cao Z, Jing Y et al (2013) Halloysite nanotube nanocomposite hydrogels with tunable mechanical properties and drug release behavior. Compos Sci Technol 85:126–130. https://doi.org/10.1016/j.compscitech.2013.06.011

    Article  Google Scholar 

  44. Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:34122. https://doi.org/10.1088/1748-6041/3/3/034122

    Article  Google Scholar 

  45. Olad A, Azhar FF, Farshi Azhar F (2014) The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceram Int 40:10061–10072. https://doi.org/10.1016/j.ceramint.2014.04.010

    Article  Google Scholar 

  46. Ambre AH, Katti KS, Katti DR (2010) Nanoclay based composite scaffolds for bone tissue engineering applications. J Nanotechnol Eng Med 1:31013. https://doi.org/10.1115/1.4002149

    Article  Google Scholar 

  47. Noori S, Kokabi M, Hassan ZMM (2015) Nanoclay enhanced the mechanical properties of poly(vinyl alcohol)/chitosan/montmorillonite nanocomposite hydrogel as wound dressing. Procedia Mater Sci 11:152–156. https://doi.org/10.1016/j.mspro.2015.11.023

    Article  Google Scholar 

  48. López-Arraiza A, López-Rodríguez N, Meaurio E, Sarasua JR (2005) Morphology and mechanical behavior of poly(ε-caprolactone)/nanoclay and poly(ε-caprolactone)/carbon nanofiber composites. 3rd NanoSpain Workshop, Pamplona, Spain, 20-23 March 2005, pp 1–2

    Google Scholar 

  49. Pramanik S, Bharali P, Konwar BK, Karak N (2014) Antimicrobial hyperbranched poly(ester amide)/polyaniline nanofiber modified montmorillonite nanocomposites. Mater Sci Eng C 35:61–69. https://doi.org/10.1016/j.msec.2013.10.021

    Article  Google Scholar 

  50. Fukushima K, Tabuani D, Arena M et al (2013) Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym 73:540–549. https://doi.org/10.1016/j.reactfunctpolym.2013.01.003

    Article  Google Scholar 

  51. Guo Y, Yang K, Zuo X et al (2016) Effects of clay platelets and natural nanotubes on mechanical properties and gas permeability of poly (lactic acid) nanocomposites. Polymer 83:246–259. https://doi.org/10.1016/j.polymer.2015.12.012

    Article  Google Scholar 

  52. Kapusetti G, Misra N, Singh V et al (2014) Bone cement based nanohybrid as a super biomaterial for bone healing. J Mater Chem B 2:3984. https://doi.org/10.1039/c4tb00501e

    Article  Google Scholar 

  53. Wang X, Du Y, Luo J et al (2007) Chitosan/organic rectorite nanocomposite films: structure, characteristic and drug delivery behaviour. Carbohydr Polym 69:41–49. https://doi.org/10.1016/j.carbpol.2006.08.025

    Article  Google Scholar 

  54. Xiang H, Xia M, Cunningham A et al (2017) Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels. J Mech Behav Biomed Mater 72:74–81. https://doi.org/10.1016/j.jmbbm.2017.04.026

    Article  Google Scholar 

  55. Kickelbick G, Wiley InterScience (Online service) (2007) Hybrid materials: synthesis, characterization, and applications. Wiley, Weinheim

    Google Scholar 

  56. Wu K, Feng R, Jiao Y, Zhou C (2017) Effect of halloysite nanotubes on the structure and function of important multiple blood components. Mater Sci Eng C 75:72–78. https://doi.org/10.1016/j.msec.2017.02.022

    Article  Google Scholar 

  57. Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282–295

    Google Scholar 

  58. Mortimer GM, Jack KS, Musumeci AW et al (2016) Stable non-covalent labeling of layered silicate nanoparticles for biological imaging. Mater Sci Eng C 61:674–680. https://doi.org/10.1016/j.msec.2015.12.047

    Article  Google Scholar 

  59. Michael FM, Khalid M, Walvekar R et al (2016) Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater Sci Eng C 67:792–806. https://doi.org/10.1016/j.msec.2016.05.037

    Article  Google Scholar 

  60. Pal S (2014) Mechanical properties of biological materials. In: Design of artificial human joints & organs, 1st edn. Springer US, New York, pp 1–419

    Chapter  Google Scholar 

  61. Bankoff, ADP (2012) Biomechanical characteristics of the bone. In: Goswami  T (ed) Human musculoskeletal biomechanics, InTech, pp 61–86

    Google Scholar 

  62. Al Thaher Y, Perni S, Prokopovich P (2017) Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Adv Colloid Interf Sci. https://doi.org/10.1016/j.cis.2017.04.017

    Article  Google Scholar 

  63. Wang CX, Tong J (2008) Interfacial strength of novel PMMA/HA/nanoclay bone cement. Biomed Mater Eng 18:367–375. https://doi.org/10.3233/BME-2008-0553

    Article  Google Scholar 

  64. Dunne NJ, Orr JF (2002) Curing characteristics of acrylic bone cement. J Mater Sci Mater Med 13:17–22

    Article  Google Scholar 

  65. Wang J-H, Young T-H, Lin D-J et al (2006) Preparation of clay/PMMA nanocomposites with intercalated or exfoliated structure for bone cement synthesis. Macromol Mater Eng 291:661–669. https://doi.org/10.1002/mame.200500389

    Article  Google Scholar 

  66. Lvov YM, DeVilliers MM, Fakhrullin RF (2016) The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv 5247:1–10. https://doi.org/10.1517/17425247.2016.1169271

    Article  Google Scholar 

  67. Lvov Y, Aerov A, Fakhrullin R (2017) Clay nanotube encapsulation for functional biocomposites. Adv Colloid Interf Sci 2014:189–198

    Google Scholar 

  68. Levis SR, Deasy PB (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243:125–134. https://doi.org/10.1016/S0378-5173(02)00274-0

    Article  Google Scholar 

  69. Zafar R, Zia KM, Tabasum S et al (2016) Polysaccharide based bionanocomposites, properties and applications: a review. Int J Biol Macromol 92:1012–1024. https://doi.org/10.1016/j.ijbiomac.2016.07.102

    Article  Google Scholar 

  70. Aliabadi M, Dastjerdi R, Kabiri K (2013) HTCC-modified nanoclay for tissue engineering applications: a synergistic cell growth and antibacterial efficiency. Biomed Res Int 2013:749240. https://doi.org/10.1155/2013/749240

    Article  Google Scholar 

  71. Payne SA, Katti DR, Katti KS (2016) Probing electronic structure of biomineralized hydroxyapatite inside nanoclay galleries. Micron 90:78–86. https://doi.org/10.1016/j.micron.2016.09.001

    Article  Google Scholar 

  72. Nitya G, Nair GT, Mony U et al (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23:1749–1761. https://doi.org/10.1007/s10856-012-4647-x

    Article  Google Scholar 

  73. Mkhabela V, Ray SS (2015) Biodegradation and bioresorption of poly(ɛ-caprolactone) nanocomposite scaffolds. Int J Biol Macromol 79:186–192. https://doi.org/10.1016/j.ijbiomac.2015.04.056

    Article  Google Scholar 

  74. Ambre AH, Katti DR, Katti KS (2013) Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. J Biomed Mater Res A 101 A:2644–2660. https://doi.org/10.1002/jbm.a.34561

    Article  Google Scholar 

  75. Sandri G, Aguzzi C, Rossi S et al (2017) Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. https://doi.org/10.1016/j.actbio.2017.05.032

    Article  Google Scholar 

  76. Liu M, Shen Y, Ao P et al (2014) The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv 4:23540–23553. https://doi.org/10.1039/C4RA02189D

    Article  Google Scholar 

  77. Heydary HA, Karamian E, Poorazizi E et al (2015) A novel nano-fiber of Iranian gum tragacanth-polyvinyl alcohol/nanoclay composite for wound healing applications. Procedia Mater Sci 11:176–182. https://doi.org/10.1016/j.mspro.2015.11.079

    Article  Google Scholar 

  78. Yang C, Xue R, Zhang Q et al (2017) Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: an outstanding antibacterial wound dressing. Mater Sci Eng C 81:303–313. https://doi.org/10.1016/j.msec.2017.08.008

    Article  Google Scholar 

  79. Sabaa MW, Abdallah HM, Mohamed NA, Mohamed RR (2015) Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites. Mater Sci Eng C 56:363–373. https://doi.org/10.1016/j.msec.2015.06.043

    Article  Google Scholar 

  80. Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C 53:212–221. https://doi.org/10.1016/j.msec.2015.04.018

    Article  Google Scholar 

  81. Pacelli S, Paolicelli P, Moretti G et al (2015) Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J 77:114–223. https://doi.org/10.1016/j.eurpolymj.2016.02.007

    Article  Google Scholar 

  82. Demirci S, Suner SS, Sahiner M, Sahiner N (2017) Superporous hyaluronic acid cryogel composites embedding synthetic polyethyleneimine microgels and halloysite nanotubes as natural clay. Eur Polym J 93:775–784. https://doi.org/10.1016/j.eurpolymj.2017.04.022

    Article  Google Scholar 

  83. Tzialla AA, Pavlidis IV, Felicissimo MP et al (2010) Lipase immobilization on smectite nanoclays: characterization and application to the epoxidation of α-pinene. Bioresour Technol 101:1587–1594. https://doi.org/10.1016/j.biortech.2009.10.023

    Article  Google Scholar 

  84. Menezes-Blackburn D, Jorquera M, Gianfreda L et al (2011) Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays. Bioresour Technol 102:9360–9367. https://doi.org/10.1016/j.biortech.2011.07.054

    Article  Google Scholar 

  85. Yuan P, Southon PD, Liu Z et al (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751. https://doi.org/10.1021/jp805657t

    Article  Google Scholar 

  86. Oliveira GC, Moccelini SK, Castilho M et al (2012) Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta 98:130–136. https://doi.org/10.1016/j.talanta.2012.06.059

    Article  Google Scholar 

  87. Li X, QianYang OJ et al (2016) Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl Clay Sci 126:306–312. https://doi.org/10.1016/j.clay.2016.03.035

    Article  Google Scholar 

  88. Vergaro V, Lvov YM, Leporatti S (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci 12:1265–1271. https://doi.org/10.1002/mabi.201200121

    Article  Google Scholar 

  89. Roozbahani M, Kharaziha M, Emadi R (2017) pH sensitive dexamethasone encapsulated laponite nanoplatelets: release mechanism and cytotoxicity. Int J Pharm 518:312–319. https://doi.org/10.1016/j.ijpharm.2017.01.001

    Article  Google Scholar 

  90. Shutava TG, Fakhrullin RF, Lvov YM (2014) Spherical and tubule nanocarriers for sustained drug release. This review comes from a themed issue on New technologies polyelectrolyte coated drug nanocarriers. Curr Opin Pharmacol 18:141–148. https://doi.org/10.1016/j.coph.2014.10.001

    Article  Google Scholar 

  91. Massaro M, Amorati R, Cavallaro G et al (2016) Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B Biointerfaces 140:505–513. https://doi.org/10.1016/j.colsurfb.2016.01.025

    Article  Google Scholar 

  92. Jiang WT, Chang PH, Tsai Y, Li Z (2016) Halloysite nanotubes as a carrier for the uptake of selected pharmaceuticals. Microporous Mesoporous Mater 220:298–307. https://doi.org/10.1016/j.micromeso.2015.09.011

    Article  Google Scholar 

  93. Fizir M, Dramou P, Zhang K et al (2017) Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2017.04.011

    Article  Google Scholar 

  94. Viseras C, Cerezo P, Sanchez R et al (2010) Current challenges in clay minerals for drug delivery. Appl Clay Sci 48:291–295. https://doi.org/10.1016/j.clay.2010.01.007

    Article  Google Scholar 

  95. Yang JH, Lee JH, Ryu HJ et al (2016) Drug–clay nanohybrids as sustained delivery systems. Appl Clay Sci 130:20–32. https://doi.org/10.1016/j.clay.2016.01.021

    Article  Google Scholar 

  96. Suresh R, Borkar SN, Sawant VA et al (2010) Nanoclay drug delivery system. Int J Pharm Sci Nanotechnol 3:901–905

    Google Scholar 

  97. Dzamukova MR, Naumenko EA, Lvov YM, Fakhrullin RF (2015) Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci Rep 5:10560. https://doi.org/10.1038/srep10560

    Article  Google Scholar 

  98. Jayrajsinh S, Shankar G, Pharm M et al (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Deliv Sci Technol 39:200–209. https://doi.org/10.1016/j.jddst.2017.03.023

    Article  Google Scholar 

  99. Cojocariu A, Lenuta P, Cheaburu C, Cornelia V (2012) Chitosan/montmorillonite composites as matrices for prolonged delivery of some novel nitric oxide donor compounds based on theophylline and paracetamol. Cellul Chem Technol 46:35–43

    Google Scholar 

  100. Bi X, Zhang H, Dou L (2014) Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics 6:298–332. https://doi.org/10.3390/pharmaceutics6020298

    Article  Google Scholar 

  101. Karnik S, Jammalamadaka UM, Tappa KK et al (2016) Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications. Heliyon 2:115–120. https://doi.org/10.1016/j.heliyon.2016.e00072

    Article  Google Scholar 

  102. Campbell K, Qi S, Craig DQM, McNally T (2009) Paracetamol-loaded poly(ε-caprolactone) layered silicate nanocomposites prepared using hot-melt extrusion. J Pharm Sci 98:4831–4843. https://doi.org/10.1002/jps.21787

    Article  Google Scholar 

  103. Zeynabad FB, Salehi R, Mahkam M (2017) Design of pH-responsive antimicrobial nanocomposite as dual drug delivery system for tumor therapy. Appl Clay Sci 141:23–35. https://doi.org/10.1016/j.clay.2017.02.015

    Article  Google Scholar 

  104. Mura P, Maestrelli F, Aguzzi C, Viseras C (2016) Hybrid systems based on “drug – in cyclodextrin – in nanoclays” for improving oxaprozin dissolution properties. Int J Pharm 509:8–15. https://doi.org/10.1016/j.ijpharm.2016.05.028

    Article  Google Scholar 

  105. Liu K-HH, Liu T-YY, Chen S-YY, Liu D-MM (2008) Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045. https://doi.org/10.1016/j.actbio.2008.01.012

    Article  Google Scholar 

  106. Campbell K, Craig DQM, McNally T (2008) Poly(ethylene glycol) layered silicate nanocomposites for retarded drug release prepared by hot-melt extrusion. Int J Pharm 363:126–131. https://doi.org/10.1016/j.ijpharm.2008.06.027

    Article  Google Scholar 

  107. Bounabi L, Bouslah N, Haddadine N et al (2016) Development of poly (2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol. J Drug Deliv Sci Technol 33:58–65. https://doi.org/10.1016/j.jddst.2016.03.010

    Article  Google Scholar 

  108. Rao KM, Nagappan S, Seo DJ, Ha C-S (2014) pH sensitive halloysite–sodium hyaluronate/poly(hydroxyethyl methacrylate) nanocomposites for colon cancer drug delivery. Appl Clay Sci 97–98:33–42. https://doi.org/10.1016/j.clay.2014.06.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Peña-Parás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Peña-Parás, L., Sánchez-Fernández, J.A., Vidaltamayo, R. (2019). Nanoclays for Biomedical Applications. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_50

Download citation

Publish with us

Policies and ethics