Skip to main content

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 2295 Accesses

Abstract

Dural arteriovenous fistulas (dAVF) are abnormal arteriovenous shunts between meningeal arteries and intracranial dural sinuses or veins. This chapter discusses the anatomy, classification schemes, pathophysiology, clinical presentation, pediatric dAVFs, imaging characteristics, natural history, and management. Nuances of presentation and management based on location of the fistula are also discussed. The Appendix 14.1 covers carotid-cavernous fistulas. Spinal dural AV fistulas are covered in Chap. 20, Spinal Vascular Lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Borden JA, Wu JK, Shucart WA. A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg. 1995;82:166–79.

    CAS  PubMed  Google Scholar 

  2. Al-Shahi R, Bhattacharya JJ, Currie DG, et al. Prospective, population-based detection of intracranial vascular malformations in adults: the scottish intracranial vascular malformation study (SIVMS). Stroke. 2003;34:1163–9.

    PubMed  Google Scholar 

  3. Davies MA, TerBrugge K, Willinsky R, Coyne T, Saleh J, Wallace MC. The validity of classification for the clinical presentation of intracranial dural arteriovenous fistulas. J Neurosurg. 1996;85:830–7.

    CAS  PubMed  Google Scholar 

  4. Cognard C, Gobin YP, Pierot L, et al. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology. 1995;194:671–80.

    CAS  PubMed  Google Scholar 

  5. Houser OW, Campbell JK, Campbell RJ, Sundt TM Jr. Arteriovenous malformation affecting the transverse dural venous sinus—an acquired lesion. Mayo Clin Proc. 1979;54:651–61.

    CAS  PubMed  Google Scholar 

  6. Piton J, Guilleux MH, Guibert-Tranier F, Caille JM. Fistulae of the lateral sinus. J Neuroradiol. 1984;11:143–59.

    CAS  PubMed  Google Scholar 

  7. Mullan S. Reflections upon the nature and management of intracranial and intraspinal vascular malformations and fistulae. J Neurosurg. 1994;80:606–16.

    CAS  PubMed  Google Scholar 

  8. Chaudhary MY, Sachdev VP, Cho SH, Weitzner I Jr, Puljic S, Huang YP. Dural arteriovenous malformation of the major venous sinuses: an acquired lesion. AJNR Am J Neuroradiol. 1982;3:13–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tirakotai W, Bian LG, Bertalanffy H, Siegfried B, Sure U. Immunohistochemical study in dural arteriovenous fistula and possible role of ephrin-B2 for development of dural arteriovenous fistula. Chin Med J. 2004;117:1815–20.

    CAS  PubMed  Google Scholar 

  10. Klisch J, Kubalek R, Scheufler KM, Zirrgiebel U, Drevs J, Schumacher M. Plasma vascular endothelial growth factor and serum soluble angiopoietin receptor sTIE-2 in patients with dural arteriovenous fistulas: a pilot study. Neuroradiology. 2005;47:10–7.

    PubMed  Google Scholar 

  11. Kerber CW, Newton TH. The macro and microvasculature of the dura mater. Neuroradiology. 1973;6:175–9.

    CAS  PubMed  Google Scholar 

  12. Ishikawa T, Sato S, Sasaki T, et al. Histologic study of arteriovenous shunts in the normal dura mater adjacent to the transverse sinus. Surg Neurol. 2007;68:272–6.

    PubMed  Google Scholar 

  13. Rowbotham GF, Little E. The circulations and reservoir of the brain. Br J Surg. 1962;50:244–50.

    CAS  PubMed  Google Scholar 

  14. Djindjian R, Cophignon J, Rey A, Theron J, Merland JJ, Houdart R. Superselective arteriographic embolization by the femoral route in neuroradiology. Study of 50 cases. II. Embolization in vertebromedullary pathology. Neuroradiology. 1973;6:132–42.

    CAS  PubMed  Google Scholar 

  15. Hamada Y, Goto K, Inoue T, et al. Histopathological aspects of dural arteriovenous fistulas in the transverse-sigmoid sinus region in nine patients. Neurosurgery. 1997;40:452–6; discussion 6–8.

    CAS  PubMed  Google Scholar 

  16. Nishijima M, Takaku A, Endo S, et al. Etiological evaluation of dural arteriovenous malformations of the lateral and sigmoid sinuses based on histopathological examinations. J Neurosurg. 1992;76:600–6.

    CAS  PubMed  Google Scholar 

  17. Uranishi R, Nakase H, Sakaki T. Expression of angiogenic growth factors in dural arteriovenous fistula. J Neurosurg. 1999;91:781–6.

    CAS  PubMed  Google Scholar 

  18. Lawton MT, Jacobowitz R, Spetzler RF. Redefined role of angiogenesis in the pathogenesis of dural arteriovenous malformations. J Neurosurg. 1997;87:267–74.

    CAS  PubMed  Google Scholar 

  19. Herman JM, Spetzler RF, Bederson JB, Kurbat JM, Zabramski JM. Genesis of a dural arteriovenous malformation in a rat model. J Neurosurg. 1995;83:539–45.

    CAS  PubMed  Google Scholar 

  20. Lasjaunias P, Chiu M, ter Brugge K, Tolia A, Hurth M, Bernstein M. Neurological manifestations of intracranial dural arteriovenous malformations. J Neurosurg. 1986;64:724–30.

    CAS  PubMed  Google Scholar 

  21. Brown RD Jr, Flemming KD, Meyer FB, Cloft HJ, Pollock BE, Link ML. Natural history, evaluation, and management of intracranial vascular malformations. Mayo Clin Proc. 2005;80:269–81.

    PubMed  Google Scholar 

  22. Satomi J, van Dijk JM, Terbrugge KG, Willinsky RA, Wallace MC. Benign cranial dural arteriovenous fistulas: outcome of conservative management based on the natural history of the lesion. J Neurosurg. 2002;97:767–70.

    PubMed  Google Scholar 

  23. Raupp S, van Rooij WJ, Sluzewski M, Tijssen CC. Type I cerebral dural arteriovenous fistulas of the lateral sinus: clinical features in 24 patients. Eur J Neurol. 2004;11:489–91.

    CAS  PubMed  Google Scholar 

  24. van Rooij WJ, Sluzewski M, Beute GN. Dural arteriovenous fistulas with cortical venous drainage: incidence, clinical presentation, and treatment. AJNR Am J Neuroradiol. 2007;28:651–5.

    PubMed  PubMed Central  Google Scholar 

  25. van Dijk JM, TerBrugge KG, Willinsky RA, Wallace MC. Selective disconnection of cortical venous reflux as treatment for cranial dural arteriovenous fistulas. J Neurosurg. 2004;101:31–5.

    PubMed  Google Scholar 

  26. Barnwell SL, Halbach VV, Dowd CF, Higashida RT, Hieshima GB, Wilson CB. Multiple dural arteriovenous fistulas of the cranium and spine. AJNR Am J Neuroradiol. 1991;12:441–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown RD Jr, Wiebers DO, Nichols DA. Intracranial dural arteriovenous fistulae: angiographic predictors of intracranial hemorrhage and clinical outcome in nonsurgical patients. J Neurosurg. 1994;81:531–8.

    PubMed  Google Scholar 

  28. Cordonnier C, Al-Shahi Salman R, Bhattacharya JJ, et al. Differences between intracranial vascular malformation types in the characteristics of their presenting haemorrhages: prospective, population-based study. J Neurol Neurosurg Psychiatry. 2008;79(1):47–51.

    CAS  PubMed  Google Scholar 

  29. Davies MA, ter Brugge K, Willinsky R, Wallace MC. The natural history and management of intracranial dural arteriovenous fistulae. Part 2: aggressive lesions. Interv Neuroradiol. 1997;3:303–11.

    CAS  PubMed  Google Scholar 

  30. Willinsky R, Terbrugge K, Montanera W, Mikulis D, Wallace MC. Venous congestion: an MR finding in dural arteriovenous malformations with cortical venous drainage. AJNR Am J Neuroradiol. 1994;15:1501–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamakami I, Kobayashi E, Yamaura A. Diffuse white matter changes caused by dural arteriovenous fistula. J Clin Neurosci. 2001;8:471–5.

    CAS  PubMed  Google Scholar 

  32. Sato KMDP, Shimizu HMDP, Fujimura MMDP, Inoue TMDP, Matsumoto YMD, Tominaga TMDP. Compromise of brain tissue caused by cortical venous reflux of intracranial dural arteriovenous fistulas: assessment with diffusion-weighted magnetic resonance imaging. Stroke. 2011;42:998–1003.

    PubMed  Google Scholar 

  33. Hirono N, Yamadori A, Komiyama M. Dural arteriovenous fistula: a cause of hypoperfusion-induced intellectual impairment. Eur Neurol. 1993;33:5–8.

    CAS  PubMed  Google Scholar 

  34. Cognard C, Casasco A, Toevi M, Houdart E, Chiras J, Merland J-J. Dural arteriovenous fistulas as a cause of intracranial hypertension due to impairment of cranial venous outflow. J Neurol Neurosurg Psychiatry. 1998;65:308–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hurst RW, Bagley LJ, Galetta S, et al. Dementia resulting from dural arteriovenous fistulas: the pathologic findings of venous hypertensive encephalopathy. AJNR Am J Neuroradiol. 1998;19:1267–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hasumi T, Fukushima T, Haisa T, Yonemitsu T, Waragai M. Focal dural arteriovenous fistula (DAVF) presenting with progressive cognitive impairment including amnesia and alexia. Intern Med. 2007;46:1317–20.

    PubMed  Google Scholar 

  37. Holekamp TF, Mollman ME, Murphy RK, et al. Dural arteriovenous fistula-induced thalamic dementia: report of 4 cases. J Neurosurg. 2016;124:1752–65.

    PubMed  Google Scholar 

  38. Silberstein P, Kottos P, Worner C, et al. Dural arteriovenous fistulae causing pseudotumour cerebri syndrome in an elderly man. J Clin Neurosci. 2003;10:242–3.

    CAS  PubMed  Google Scholar 

  39. Lee PH, Lee JS, Shin DH, Kim BM, Huh K. Parkinsonism as an initial manifestation of dural arteriovenous fistula. Eur J Neurol. 2005;12:403–6.

    CAS  PubMed  Google Scholar 

  40. Kim N-H, Cho K-T, Seo HS. Myelopathy due to intracranial dural arteriovenous fistula: a potential diagnostic pitfall. J Neurosurg. 2011;114:830–3.

    PubMed  Google Scholar 

  41. Hetts SW, Moftakhar P, Maluste N, et al. Pediatric intracranial dural arteriovenous fistulas: age-related differences in clinical features, angioarchitecture, and treatment outcomes. J Neurosurg Pediatr. 2016;18:602–10.

    PubMed  Google Scholar 

  42. Walcott BP, Smith ER, Scott RM, Orbach DB. Dural arteriovenous fistulae in pediatric patients: associated conditions and treatment outcomes. J Neurointerv Surg. 2013;5:6–9.

    PubMed  Google Scholar 

  43. Stouffer JL, Tyler RS. Characterization of tinnitus by tinnitus patients. J Speech Hear Disord. 1990;55:439–53.

    CAS  PubMed  Google Scholar 

  44. Waldvogel D, Mattle HP, Sturzenegger M, Schroth G. Pulsatile tinnitus—a review of 84 patients. J Neurol. 1998;245:137–42.

    CAS  PubMed  Google Scholar 

  45. Adler JR, Ropper AH. Self-audible venous bruits and high jugular bulb. Arch Neurol. 1986;43:257–9.

    CAS  PubMed  Google Scholar 

  46. Russell EJ, De Michaelis BJ, Wiet R, Meyer J. Objective pulse-synchronous “essential” tinnitus due to narrowing of the transverse dural venous sinus. Int Tinnitus J. 1995;1:127–37.

    CAS  PubMed  Google Scholar 

  47. Shin EJ, Lalwani AK, Dowd CF. Role of angiography in the evaluation of patients with pulsatile tinnitus. Laryngoscope. 2000;110:1916–20.

    CAS  PubMed  Google Scholar 

  48. Willinsky R, Goyal M, terBrugge K, Montanera W. Tortuous, engorged pial veins in intracranial dural arteriovenous fistulas: correlations with presentation, location, and MR findings in 122 patients. AJNR Am J Neuroradiol. 1999;20:1031–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakagawa I, Taoka T, Wada T, et al. The use of susceptibility-weighted imaging as an indicator of retrograde leptomeningeal venous drainage and venous congestion with dural arteriovenous fistula: diagnosis and follow-up after treatment. Neurosurgery. 2013;72:47–54; discussion 5.

    PubMed  Google Scholar 

  50. Noguchi K, Kubo M, Kuwayama N, et al. Intracranial dural arteriovenous fistulas with retrograde cortical venous drainage: assessment with cerebral blood volume by dynamic susceptibility contrast magnetic resonance imaging. AJNR Am J Neuroradiol. 2006;27:1252–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hashimoto Y, Kin S, Haraguchi K, Niwa J. Pitfalls in the preoperative evaluation of subarachnoid hemorrhage without digital subtraction angiography: report on 2 cases. Surg Neurol. 2007;68:344–8.

    PubMed  Google Scholar 

  52. Coskun O, Hamon M, Catroux G, Gosme L, Courtheoux P, Theron J. Carotid-cavernous fistulas: diagnosis with spiral CT angiography. AJNR Am J Neuroradiol. 2000;21:712–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim DJMD, terBrugge KMDF, Krings TMDPF, Willinsky RMDF, Wallace CMDMF. Spontaneous angiographic conversion of intracranial dural arteriovenous shunt: long-term follow-up in nontreated patients. Stroke. 2010;41:1489–94.

    PubMed  Google Scholar 

  54. Gross BA, Du R. The natural history of cerebral dural arteriovenous fistulae. Neurosurgery. 2012;71:594–602; discussion -3.

    PubMed  Google Scholar 

  55. Davies MA, Saleh J, ter Brugge K, Willinsky R, Wallace MC. The natural history and management of intracranial dural arteriovenous fistulae. Part 1: benign lesions. Interv Neuroradiol. 1997;3:295–302.

    CAS  PubMed  Google Scholar 

  56. Shah MN, Botros JA, Pilgram TK, et al. Borden-shucart type I dural arteriovenous fistulas: clinical course including risk of conversion to higher-grade fistulas. J Neurosurg. 2012;117:539–45.

    PubMed  Google Scholar 

  57. Bulters DO, Mathad N, Culliford D, Millar J, Sparrow OC. The natural history of cranial dural arteriovenous fistulae with cortical venous reflux—the significance of venous ectasia. Neurosurgery. 2012;70:312–8; discussion 8–9.

    PubMed  Google Scholar 

  58. van Dijk JMC, terBrugge KG, Willinsky RA, Wallace MC. Clinical course of cranial dural arteriovenous fistulas with long-term persistent cortical venous reflux. Stroke. 2002;33:1233–6.

    PubMed  Google Scholar 

  59. Duffau H, Lopes M, Janosevic V, et al. Early rebleeding from intracranial dural arteriovenous fistulas: report of 20 cases and review of the literature. J Neurosurg. 1999;90:78–84.

    CAS  PubMed  Google Scholar 

  60. Piippo A, Laakso A, Seppa K, et al. Early and long-term excess mortality in 227 patients with intracranial dural arteriovenous fistulas. J Neurosurg. 2013;119:164–71.

    PubMed  Google Scholar 

  61. Barrow DL, Spector RH, Braun IF, Landman JA, Tindall SC, Tindall GT. Classification and treatment of spontaneous carotid-cavernous sinus fistulas. J Neurosurg. 1985;62:248–56.

    CAS  PubMed  Google Scholar 

  62. Sasaki H, Nukui H, Kaneko M, et al. Long-term observations in cases with spontaneous carotid-cavernous fistulas. Acta Neurochir. 1988;90:117–20.

    CAS  PubMed  Google Scholar 

  63. Halbach VV, Higashida RT, Hieshima GB, Goto K, Norman D, Newton TH. Dural fistulas involving the transverse and sigmoid sinuses: results of treatment in 28 patients. Radiology. 1987;163:443–7.

    CAS  PubMed  Google Scholar 

  64. Lucas CP, Zabramski JM, Spetzler RF, Jacobowitz R. Treatment for intracranial dural arteriovenous malformations: a meta-analysis from the English language literature. Neurosurgery. 1997;40:1119–30; discussion 30–2.

    CAS  PubMed  Google Scholar 

  65. Sundt TM Jr, Piepgras DG. The surgical approach to arteriovenous malformations of the lateral and sigmoid dural sinuses. J Neurosurg. 1983;59:32–9.

    PubMed  Google Scholar 

  66. Thompson BG, Doppman JL, Oldfield EH. Treatment of cranial dural arteriovenous fistulae by interruption of leptomeningeal venous drainage. J Neurosurg. 1994;80:617–23.

    CAS  PubMed  Google Scholar 

  67. Miller NR, Monsein LH, Debrun GM, Tamargo RJ, Nauta HJ. Treatment of carotid-cavernous sinus fistulas using a superior ophthalmic vein approach. J Neurosurg. 1995;83:838–42.

    CAS  PubMed  Google Scholar 

  68. Quinones D, Duckwiler G, Gobin PY, Goldberg RA, Vinuela F. Embolization of dural cavernous fistulas via superior ophthalmic vein approach. AJNR Am J Neuroradiol. 1997;18:921–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Houdart E, Saint-Maurice JP, Chapot R, et al. Transcranial approach for venous embolization of dural arteriovenous fistulas. J Neurosurg. 2002;97:280–6.

    PubMed  Google Scholar 

  70. Cifarelli CP, Kaptain G, Yen C-P, Schlesinger DP, Sheehan JP. Gamma knife radiosurgery for dural arteriovenous fistulas. Neurosurgery. 2010;67:1230–5.

    PubMed  Google Scholar 

  71. Yang H-C, Kano H, Kondziolka D, et al. Stereotactic radiosurgery with or without embolization for intracranial dural arteriovenous fistulas. Neurosurgery. 2010;67:1276–85.

    PubMed  Google Scholar 

  72. Chen CJ, Lee CC, Ding D, et al. Stereotactic radiosurgery for intracranial dural arteriovenous fistulas: a systematic review. J Neurosurg. 2015;122:353–62.

    PubMed  Google Scholar 

  73. Andrade-Souza YM, Ramani M, Scora D, Tsao MN, terBrugge K, Schwartz ML. Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery. 2007;60:443–52. https://doi.org/10.1227/01.NEU.0000255347.25959.D0.

    Article  PubMed  Google Scholar 

  74. Back AG, Vollmer D, Zeck O, Shkedy C, Shedden PM. Retrospective analysis of unstaged and staged gamma knife surgery with and without preceding embolization for the treatment of arteriovenous malformations. J Neurosurg. 2008;109(Suppl):57–64.

    PubMed  Google Scholar 

  75. Sure U, Surucu O, Engenhart-Cabillic R. Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery. 2008;63:E376; author reply E.

    PubMed  Google Scholar 

  76. Awad IA, Little JR, Akarawi WP, Ahl J. Intracranial dural arteriovenous malformations: factors predisposing to an aggressive neurological course. J Neurosurg. 1990;72:839–50.

    CAS  PubMed  Google Scholar 

  77. Kim MS, Han DH, Kwon OK, Oh C-W, Han MH. Clinical characteristics of dural arteriovenous fistula. J Clin Neurosci. 2002;9:147–55.

    PubMed  Google Scholar 

  78. McDougall CG, Halbach VV, HIgashida RT, et al. Treatment of dural arteriovenous fistulas. Neursurg Q. 1997;7:110–34.

    Google Scholar 

  79. Lalwani AK, Dowd CF, Halbach VV. Grading venous restrictive disease in patients with dural arteriovenous fistulas of the transverse/sigmoid sinus. J Neurosurg. 1993;79:11–5.

    CAS  PubMed  Google Scholar 

  80. Horinaka N, Nonaka Y, Nakayama T, Mori K, Wada R, Maeda M. Dural arteriovenous fistula of the transverse sinus with concomitant ipsilateral meningioma. Acta Neurochir. 2003;145:501–4; discussion 4.

    CAS  PubMed  Google Scholar 

  81. Cawley CM, Barrow DL, Dion JE. Treatment of lateral-sigmoid and sagittal sinus dural arteriovenous malformations. In: Winn HR, editor. Youmans neurological surgery. Philadelphia: Saunders; 2004. p. 2283–91.

    Google Scholar 

  82. de Paula LC, Zabramski JM. Dural arteriovenous fistula of the transverse-sigmoid sinus causing trigeminal neuralgia. Acta Neurochir. 2007;149(12):1249–53; discussion 1253.

    Google Scholar 

  83. Ertl L, Bruckmann H, Kunz M, Crispin A, Fesl G. Endovascular therapy of low- and intermediate-grade intracranial lateral dural arteriovenous fistulas: a detailed analysis of primary success rates, complication rates, and long-term follow-up of different technical approaches. J Neurosurg. 2017;126:360–7.

    PubMed  Google Scholar 

  84. Caragine LP, Halbach VV, Dowd CF, Ng PP, Higashida RT. Parallel venous channel as the recipient pouch in transverse/sigmoid sinus dural fistulae. Neurosurgery. 2003;53:1261–6. discussion 6–7

    PubMed  Google Scholar 

  85. Dawson RC 3rd, Joseph GJ, Owens DS, Barrow DL. Transvenous embolization as the primary therapy for arteriovenous fistulas of the lateral and sigmoid sinuses. AJNR Am J Neuroradiol. 1998;19:571–6.

    PubMed  PubMed Central  Google Scholar 

  86. Urtasun F, Biondi A, Casaco A, et al. Cerebral dural arteriovenous fistulas: percutaneous transvenous embolization. Radiology. 1996;199:209–17.

    CAS  PubMed  Google Scholar 

  87. Roy D, Raymond J. The role of transvenous embolization in the treatment of intracranial dural arteriovenous fistulas. Neurosurgery. 1997;40:1133–41; discussion 41–4.

    CAS  PubMed  Google Scholar 

  88. Olteanu-Nerbe V, Uhl E, Steiger HJ, Yousry T, Reulen HJ. Dural arteriovenous fistulas including the transverse and sigmoid sinuses: results of treatment in 30 cases. Acta Neurochir. 1997;139:307–18.

    CAS  PubMed  Google Scholar 

  89. Halbach VV, HIgashida RT, Hieshima GB, Christopher FD. Endovascular therapy of dural fistulas. In: Vinuela F, Halbach VV, Dion JE, editors. Interventional neuroradiology: endovascular therapy of the central nervous system. New York: Raven; 1992. p. 29–50.

    Google Scholar 

  90. Murphy KJ, Gailloud P, Venbrux A, Deramond H, Hanley D, Rigamonti D. Endovascular treatment of a grade IV transverse sinus dural arteriovenous fistula by sinus recanalization, angioplasty, and stent placement: technical case report. Neurosurgery. 2000;46:497–500; discussion -1.

    CAS  PubMed  Google Scholar 

  91. Friedman JA, Pollock BE, Nichols DA, Gorman DA, Foote RL, Stafford SL. Results of combined stereotactic radiosurgery and transarterial embolization for dural arteriovenous fistulas of the transverse and sigmoid sinuses. J Neurosurg. 2001;94:886–91.

    CAS  PubMed  Google Scholar 

  92. Pan DH, Chung WY, Guo WY, et al. Stereotactic radiosurgery for the treatment of dural arteriovenous fistulas involving the transverse-sigmoid sinus. J Neurosurg. 2002;96:823–9.

    PubMed  Google Scholar 

  93. Tomsick TA. Etiology, prevalence, and natural history. In: Tomsick TA, editor. Carotid cavernous fistula. Cincinnati: Digital Educational Publishing; 1997. p. 59–73.

    Google Scholar 

  94. Ernst RJ, Tomsick TA. Classification and angiography of carotid cavernous fistulas. In: Tomsick TA, editor. Carotid cavernous fistula. Cincinnati: Digital Educational Publishing; 1997. p. 13–21.

    Google Scholar 

  95. Kirsch M, Henkes H, Liebig T, et al. Endovascular management of dural carotid-cavernous sinus fistulas in 141 patients. Neuroradiology. 2006;48:486–90.

    CAS  PubMed  Google Scholar 

  96. Malek AM, Halbach VV, HIgashida RT, Phatouros CC, Meyers PM, Dowd CF. Treatment of dural arteriomalformations and fistulas. In: Rosenwasser RH, editor. Neuroendovascular surgery. Philadelphia: W.B. Saunders; 2000. p. 147–66.

    Google Scholar 

  97. Barnwell SL, Halbach VV, Dowd CF, Higashida RT, Hieshima GB. Dural arteriovenous fistulas involving the inferior petrosal sinus: angiographic findings in six patients. AJNR Am J Neuroradiol. 1990;11:511–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Phelps CD, Thompson HS, Ossoinig KC. The diagnosis and prognosis of atypical carotid-cavernous fistula (red-eyed shunt syndrome). Am J Ophthalmol. 1982;93:423–36.

    CAS  PubMed  Google Scholar 

  99. Mohyuddin A. Indirect carotid cavernous fistula presenting as pulsatile tinnitus. J Laryngol Otol. 2000;114:788–9.

    CAS  PubMed  Google Scholar 

  100. Acierno MD, Trobe JD, Cornblath WT, Gebarski SS. Painful oculomotor palsy caused by posterior-draining dural carotid cavernous fistulas. Arch Ophthalmol. 1995;113:1045–9.

    CAS  PubMed  Google Scholar 

  101. Phatouros CC, Meyers PM, Dowd CF, Halbach VV, Malek AM, HIgashida RT. Carotid artery cavernous fistulas. In: Rosenwasser RH, editor. Neuroendovascular surgery. Philadelphia: W.B. Saunders; 2000. p. 67–84.

    Google Scholar 

  102. Hamby WB. Signs and symptoms of carotid-cavernous fistula. Carotid cavernous fistula. Charles C. Thomas: Springfield; 1966.

    Google Scholar 

  103. Higashida RT, Hieshima GB, Halbach VV, Bentson JR, Goto K. Closure of carotid cavernous sinus fistulae by external compression of the carotid artery and jugular vein. Acta Radiol Suppl. 1986;369:580–3.

    CAS  PubMed  Google Scholar 

  104. Kim DJ, Kim DI, Suh SH, et al. Results of transvenous embolization of cavernous dural arteriovenous fistula: a single-center experience with emphasis on complications and management. AJNR Am J Neuroradiol. 2006;27:2078–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Benndorf G, Bender A, Lehmann R, Lanksch W. Transvenous occlusion of dural cavernous sinus fistulas through the thrombosed inferior petrosal sinus: report of four cases and review of the literature. Surg Neurol. 2000;54:42–54.

    CAS  PubMed  Google Scholar 

  106. Benndorf G, Bender A, Campi A, Menneking H, Lanksch WR. Treatment of a cavernous sinus dural arteriovenous fistula by deep orbital puncture of the superior ophthalmic vein. Neuroradiology. 2001;43:499–502.

    CAS  PubMed  Google Scholar 

  107. Gupta N, Kikkawa DO, Levi L, Weinreb RN. Severe vision loss and neovascular glaucoma complicating superior ophthalmic vein approach to carotid-cavernous sinus fistula. Am J Ophthalmol. 1997;124:853–5.

    CAS  PubMed  Google Scholar 

  108. Oishi H, Arai H, Sato K, Iizuka Y. Complications associated with transvenous embolisation of cavernous dural arteriovenous fistula. Acta Neurochir. 1999;141:1265–71.

    CAS  PubMed  Google Scholar 

  109. Agid R, Willinsky RA, Haw C, Souza MP, Vanek IJ, terBrugge KG. Targeted compartmental embolization of cavernous sinus dural arteriovenous fistulae using transfemoral medial and lateral facial vein approaches. Neuroradiology. 2004;46:156–60.

    CAS  PubMed  Google Scholar 

  110. Mounayer C, Piotin M, Spelle L, Moret J. Superior petrosal sinus catheterization for transvenous embolization of a dural carotid cavernous sinus fistula. AJNR Am J Neuroradiol. 2002;23:1153–5.

    PubMed  PubMed Central  Google Scholar 

  111. Kuwayama N, Endo S, Kitabayashi M, Nishijima M, Takaku A. Surgical transvenous embolization of a cortically draining carotid cavernous fistula via a vein of the sylvian fissure. AJNR Am J Neuroradiol. 1998;19:1329–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jahan R, Gobin YP, Glenn B, Duckwiler GR, Vinuela F. Transvenous embolization of a dural arteriovenous fistula of the cavernous sinus through the contralateral pterygoid plexus. Neuroradiology. 1998;40:189–93.

    CAS  PubMed  Google Scholar 

  113. Venturi C, Bracco S, Cerase A, et al. Endovascular treatment of a cavernous sinus dural arteriovenous fistula by transvenous embolisation through the superior ophthalmic vein via cannulation of a frontal vein. Neuroradiology. 2003;45:574–8.

    CAS  PubMed  Google Scholar 

  114. Shaibani A, Rohany M, Parkinson R, et al. Primary treatment of an indirect carotid cavernous fistula by injection of N-butyl cyanoacrylate in the dural wall of the cavernous sinus. Surg Neurol. 2007;67:403–8; discussion 8.

    PubMed  Google Scholar 

  115. Suzuki S, Lee DW, Jahan R, Duckwiler GR, Vinuela F. Transvenous treatment of spontaneous Dural carotid-cavernous fistulas using a combination of detachable coils and onyx. AJNR Am J Neuroradiol. 2006;27:1346–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Meyers PM, Halbach VV, Dowd CF, et al. Dural carotid cavernous fistula: definitive endovascular management and long-term follow-up. Am J Ophthalmol. 2002;134:85–92.

    PubMed  Google Scholar 

  117. Kupersmith MJ, Berenstein A, Flamm E, Ransohoff J. Neuroophthalmologic abnormalities and intravascular therapy of traumatic carotid cavernous fistulas. Ophthalmology. 1986;93:906–12.

    CAS  PubMed  Google Scholar 

  118. Koebbe CJ, Singhal D, Sheehan J, et al. Radiosurgery for dural arteriovenous fistulas. Surg Neurol. 2005;64:392–8; discussion 8–9.

    PubMed  Google Scholar 

  119. O'Leary S, Hodgson TJ, Coley SC, Kemeny AA, Radatz MW. Intracranial dural arteriovenous malformations: results of stereotactic radiosurgery in 17 patients. Clin Oncol (R Coll Radiol). 2002;14:97–102.

    PubMed  Google Scholar 

  120. Tomak PR, Cloft HJ, Kaga A, Cawley CM, Dion J, Barrow DL. Evolution of the management of tentorial dural arteriovenous malformations. Neurosurgery. 2003;52:750–60. discussion 60–2

    PubMed  Google Scholar 

  121. Zhou L-F, Chen L, Song D-L, Gu Y-X, Leng B. Tentorial dural arteriovenous fistulas. Surg Neurol. 2007;67:472–81.

    PubMed  Google Scholar 

  122. Picard L, Bracard S, Islak C, et al. Dural fistulae of the tentorium cerebelli. Radioanatomical, clinical and therapeutic considerations. J Neuroradiol. 1990;17:161–81.

    CAS  PubMed  Google Scholar 

  123. Lewis AI, Rosenblatt SS, Tew JM Jr. Surgical management of deep-seated dural arteriovenous malformations. J Neurosurg. 1997;87:198–206.

    CAS  PubMed  Google Scholar 

  124. Wu Q, Zhang XS, Wang HD, et al. Onyx embolization for tentorial dural arteriovenous fistula with pial arterial supply: case series and analysis of complications. World Neurosurg. 2016;92:58–64.

    PubMed  Google Scholar 

  125. King WA, Martin NA. Intracerebral hemorrhage due to dural arteriovenous malformations and fistulae. Neurosurg Clin N Am. 1992;3:577–90.

    CAS  PubMed  Google Scholar 

  126. van Rooij W, Sluzewski M, Beute GN. Tentorial artery embolization in tentorial dural arteriovenous fistulas. Neuroradiology. 2006;48:737–43.

    PubMed  Google Scholar 

  127. Deshmukh VR, Maughan PH, Spetzler RF. Resolution of hemifacial spasm after surgical obliteration of a tentorial arteriovenous fistula: case report. Neurosurgery. 2006;58:E202; discussion E.

    PubMed  Google Scholar 

  128. Benndorf G, Schmidt S, Sollmann WP, Kroppenstedt SN. Tentorial dural arteriovenous fistula presenting with various visual symptoms related to anterior and posterior visual pathway dysfunction: case report. Neurosurgery. 2003;53:222–6; discussion 6–7.

    PubMed  Google Scholar 

  129. Matsushige T, Nakaoka M, Ohta K, Yahara K, Okamoto H, Kurisu K. Tentorial dural arteriovenous malformation manifesting as trigeminal neuralgia treated by stereotactic radiosurgery: a case report. Surg Neurol. 2006;66:519–23; discussion 23.

    PubMed  Google Scholar 

  130. Iwamuro Y, Nakahara I, Higashi T, et al. Tentorial dural arteriovenous fistula presenting symptoms due to mass effect on the dilated draining vein: case report. Surg Neurol. 2006;65:511–5.

    PubMed  Google Scholar 

  131. Detwiler PW, Lucas CP, Zabramski JM, McDougall CG. Cranial dural arteriovenous malformations. BNI Quarterly. 2000;16:24–32.

    Google Scholar 

  132. Kallmes DF, Jensen ME, Cloft HJ, Kassell NF, Dion JE. Percutaneous transvenous coil embolization of a Djindjian type 4 tentorial dural arteriovenous malformation. AJNR Am J Neuroradiol. 1997;18:673–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ng PP, Halbach VV, Quinn R, et al. Endovascular treatment for dural arteriovenous fistulae of the superior petrosal sinus. Neurosurgery. 2003;53:25–32; discussion -3.

    PubMed  Google Scholar 

  134. Lv X, Li Y, Lv M, Liu A, Zhang J, Wu Z. Trigeminocardiac reflex in embolization of intracranial dural arteriovenous fistula. AJNR Am J Neuroradiol. 2007;28:1769–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Soderman M, Edner G, Ericson K, et al. Gamma knife surgery for dural arteriovenous shunts: 25 years of experience. J Neurosurg. 2006;104:867–75.

    PubMed  Google Scholar 

  136. Kurl S, Saari T, Vanninen R, Hernesniemi J. Dural arteriovenous fistulas of superior sagittal sinus: case report and review of literature. Surg Neurol. 1996;45:250–4.

    CAS  PubMed  Google Scholar 

  137. Barnwell SL, Halbach VV, Dowd CF, Higashida RT, Hieshima GB, Wilson CB. A variant of arteriovenous fistulas within the wall of dural sinuses. Results of combined surgical and endovascular therapy. J Neurosurg. 1991;74:199–204.

    CAS  PubMed  Google Scholar 

  138. Pierot L, Visot A, Boulin A, Dupuy M. Combined neurosurgical and neuroradiological treatment of a complex superior sagittal sinus dural fistula: technical note. Neurosurgery. 1998;42:194–7.

    CAS  PubMed  Google Scholar 

  139. Jaeger R. Observations on resection of the superior longitudinal sinus at and posterior to the rolandic venous inflow. J Neurosurg. 1951;8:103–9.

    CAS  PubMed  Google Scholar 

  140. Halbach VV, Higashida RT, Hieshima GB, Rosenblum M, Cahan L. Treatment of dural arteriovenous malformations involving the superior sagittal sinus. AJNR Am J Neuroradiol. 1988;9:337–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bertalanffy A, Dietrich W, Kitz K, Bavinzski G. Treatment of dural arteriovenous fistulae (dAVF’s) at the superior sagittal sinus (SSS) using embolisation combined with micro- or radiosurgery. Minim Invasive Neurosurg. 2001;44:205–10.

    CAS  PubMed  Google Scholar 

  142. Gliemroth J, Nowak G, Arnold H. Dural arteriovenous malformation in the anterior cranial fossa. Clin Neurol Neurosurg. 1999;101:37–43.

    CAS  PubMed  Google Scholar 

  143. Lawton MT, Chun J, Wilson CB, Halbach VV. Ethmoidal dural arteriovenous fistulae: an assessment of surgical and endovascular management. Neurosurgery. 1999;45:805–10; discussion 10–1.

    CAS  PubMed  Google Scholar 

  144. Tiyaworabun S, Vonofakos D, Lorenz R. Intracerebral arteriovenous malformation fed by both ethmoidal arteries. Surg Neurol. 1986;26:375–82.

    CAS  PubMed  Google Scholar 

  145. Abrahams JM, Bagley LJ, Flamm ES, Hurst RW, Sinson GP. Alternative management considerations for ethmoidal dural arteriovenous fistulas. Surg Neurol. 2002;58:410–6.

    PubMed  Google Scholar 

  146. Halbach VV, Higashida RT, Hieshima GB, Wilson CB, Barnwell SL, Dowd CF. Dural arteriovenous fistulas supplied by ethmoidal arteries. Neurosurgery. 1990;26:816–23.

    CAS  PubMed  Google Scholar 

  147. Im S-H, Oh CW, Han DH. Surgical management of an unruptured dural arteriovenous fistula of the anterior cranial fossa: natural history for 7 years. Surg Neurol. 2004;62:72–5.

    PubMed  Google Scholar 

  148. Spiotta AM, Hawk H, Kellogg RT, Turner RD, Chaudry MI, Turk AS. Transfemoral venous approach for onyx embolization of anterior fossa dural arteriovenous fistulae. J Neurointerv Surg. 2014;6:195–9.

    PubMed  Google Scholar 

  149. Defreyne L, Vanlangenhove P, Vandekerckhove T, et al. Transvenous embolization of a dural arteriovenous fistula of the anterior cranial fossa: preliminary results. AJNR Am J Neuroradiol. 2000;21:761–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lefkowitz M, Giannotta SL, Hieshima G, et al. Embolization of neurosurgical lesions involving the ophthalmic artery. Neurosurgery. 1998;43:1298–303.

    CAS  PubMed  Google Scholar 

  151. Tsutsumi S, Rhoton AL Jr. Microsurgical anatomy of the central retinal artery. Neurosurgery. 2006;59:870–8; discussion 8–9.

    PubMed  Google Scholar 

  152. Choi JW, Kim BM, Kim DJ, et al. Hypoglossal canal dural arteriovenous fistula: incidence and the relationship between symptoms and drainage pattern. J Neurosurg. 2013;119:955–60.

    PubMed  Google Scholar 

  153. Manabe S, Satoh K, Matsubara S, Satomi J, Hanaoka M, Nagahiro S. Characteristics, diagnosis and treatment of hypoglossal canal dural arteriovenous fistula: report of nine cases. Neuroradiology. 2008;50:715–21.

    PubMed  Google Scholar 

  154. Spittau B, Millan DS, El-Sherifi S, et al. Dural arteriovenous fistulas of the hypoglossal canal: systematic review on imaging anatomy, clinical findings, and endovascular management. J Neurosurg. 2015;122:883–903.

    PubMed  Google Scholar 

  155. Liang W, Xiaofeng Y, Weiguo L, Wusi Q, Gang S, Xuesheng Z. Traumatic carotid cavernous fistula accompanying basilar skull fracture: a study on the incidence of traumatic carotid cavernous fistula in the patients with basilar skull fracture and the prognostic analysis about traumatic carotid cavernous fistula. J Trauma. 2007;63:1014–20; discussion 20.

    PubMed  Google Scholar 

  156. Desal H, Leaute F, Auffray-Calvier E, et al. Direct carotid-cavernous fistula. Clinical, radiologic and therapeutic studies. Apropos of 49 cases. J Neuroradiol. 1997;24:141–54.

    CAS  PubMed  Google Scholar 

  157. Lewis AI, Tomsick TA, Tew JM Jr. Management of 100 consecutive direct carotid-cavernous fistulas: results of treatment with detachable balloons. Neurosurgery. 1995;36:239–44; discussion 44–5.

    CAS  PubMed  Google Scholar 

  158. Debrun GM, Vinuela F, Fox AJ, Davis KR, Ahn HS. Indications for treatment and classification of 132 carotid-cavernous fistulas. Neurosurgery. 1988;22:285–9.

    CAS  PubMed  Google Scholar 

  159. Desal HA, Toulgoat F, Raoul S, et al. Ehlers-Danlos syndrome type IV and recurrent carotid-cavernous fistula: review of the literature, endovascular approach, technique and difficulties. Neuroradiology. 2005;47:300–4.

    CAS  PubMed  Google Scholar 

  160. Numaguchi Y, Higashida RT, Abernathy JM, Pisarello JC. Balloon embolization in a carotid-cavernous fistula in fibromuscular dysplasia. AJNR Am J Neuroradiol. 1987;8:380–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kocer N, Kizilkilic O, Albayram S, Adaletli I, Kantarci F, Islak C. Treatment of iatrogenic internal carotid artery laceration and carotid cavernous fistula with endovascular stent-graft placement. AJNR Am J Neuroradiol. 2002;23:442–6.

    PubMed  PubMed Central  Google Scholar 

  162. Kuether TA, O'Neill OR, Nesbit GM, Barnwell SL. Direct carotid cavernous fistula after trigeminal balloon microcompression gangliolysis: case report. Neurosurgery. 1996;39:853–5; discussion 5–6.

    CAS  PubMed  Google Scholar 

  163. Barr JD, Mathis JM, Horton JA. Iatrogenic carotid-cavernous fistula occurring after embolization of a cavernous sinus meningioma. AJNR Am J Neuroradiol. 1995;16:483–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Park MS, Albuquerque FC, Nanaszko M, et al. Critical assessment of complications associated with use of the pipeline embolization device. J Neurointerv Surg. 2015;7:652–9.

    PubMed  Google Scholar 

  165. Lin LM, Colby GP, Jiang B, Pero G, Boccardi E, Coon AL. Transvenous approach for the treatment of direct carotid cavernous fistula following pipeline embolization of cavernous carotid aneurysm: a report of two cases and review of the literature. J Neurointerv Surg. 2015;7:e30.

    PubMed  Google Scholar 

  166. de Campos JM, Ferro MO, Burzaco JA, Boixados JR. Spontaneous carotid-cavernous fistula in osteogenesis imperfecta. J Neurosurg. 1982;56:590–3.

    PubMed  Google Scholar 

  167. Debrun G, Lacour P, Vinuela F, Fox A, Drake CG, Caron JP. Treatment of 54 traumatic carotid-cavernous fistulas. J Neurosurg. 1981;55:678–92.

    CAS  PubMed  Google Scholar 

  168. Higashida RT, Halbach VV, Tsai FY, et al. Interventional neurovascular treatment of traumatic carotid and vertebral artery lesions: results in 234 cases. AJR Am J Roentgenol. 1989;153:577–82.

    CAS  PubMed  Google Scholar 

  169. Halbach VV, Hieshima GB, Higashida RT, Reicher M. Carotid cavernous fistulae: indications for urgent treatment. AJR Am J Roentgenol. 1987;149:587–93.

    CAS  PubMed  Google Scholar 

  170. Kapur A, Sanghavi NG, Parikh NK, Amin SK. Spontaneous carotid-cavernous fistula with ophthalmoplegia and facial palsy. Postgrad Med J. 1982;58:773–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Vattoth S, Cherian J, Pandey T. Magnetic resonance angiographic demonstration of carotid-cavernous fistula using elliptical centric time resolved imaging of contrast kinetics (EC-TRICKS). Magn Reson Imaging. 2007;25:1227–31.

    PubMed  Google Scholar 

  172. Mehringer CM, Hieshima GB, Grinnell VS, Tsai F, Pribram HF. Improved localization of carotid cavernous fistula during angiography. AJNR Am J Neuroradiol. 1982;3:82–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Huber P. A technical contribution of the exact angiographic localization of carotid cavernous fistulas. Neuroradiology. 1976;10:239–41.

    CAS  PubMed  Google Scholar 

  174. Goto K, Hieshima GB, Higashida RT, et al. Treatment of direct carotid cavernous sinus fistulae. Various therapeutic approaches and results in 148 cases. Acta Radiol Suppl. 1986;369:576–9.

    CAS  PubMed  Google Scholar 

  175. Luo CB, Teng MMH, Chang FC, Chang CY. Transarterial balloon-assisted n-butyl-2-cyanoacrylate embolization of direct carotid cavernous fistulas. AJNR Am J Neuroradiol. 2006;27:1535–40.

    PubMed  PubMed Central  Google Scholar 

  176. van Rooij WJ, Sluzewski M, Beute GN. Ruptured cavernous sinus aneurysms causing carotid cavernous fistula: incidence, clinical presentation, treatment, and outcome. AJNR Am J Neuroradiol. 2006;27:185–9.

    PubMed  PubMed Central  Google Scholar 

  177. Nesbit GM, Barnwell SL. The use of electrolytically detachable coils in treating high-flow arteriovenous fistulas. AJNR Am J Neuroradiol. 1998;19:1565–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Jansen O, Dorfler A, Forsting M, et al. Endovascular therapy of arteriovenous fistulae with electrolytically detachable coils. Neuroradiology. 1999;41:951–7.

    CAS  PubMed  Google Scholar 

  179. Debrun GM, Ausman JI, Charbel FT, Aletich VA. Access to the cavernous sinus through the vertebral artery: technical case report. Neurosurgery. 1995;37:144–6; discussion 6–7.

    CAS  PubMed  Google Scholar 

  180. Moron FE, Klucznik RP, Mawad ME, Strother CM. Endovascular treatment of high-flow carotid cavernous fistulas by stent-assisted coil placement. AJNR Am J Neuroradiol. 2005;26:1399–404.

    PubMed  PubMed Central  Google Scholar 

  181. Archondakis E, Pero G, Valvassori L, Boccardi E, Scialfa G. Angiographic follow-up of traumatic carotid cavernous fistulas treated with endovascular stent graft placement. AJNR Am J Neuroradiol. 2007;28:342–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Gomez F, Escobar W, Gomez AM, Gomez JF, Anaya CA. Treatment of carotid cavernous fistulas using covered stents: midterm results in seven patients. AJNR Am J Neuroradiol. 2007;28:1762–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Nossek E, Zumofen D, Nelson E, et al. Use of pipeline embolization devices for treatment of a direct carotid-cavernous fistula. Acta Neurochir. 2015;157:1125–9; discussion 30.

    CAS  PubMed  Google Scholar 

  184. Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ. Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos support group (UK). Am J Med Genet. 1998;77:31–7.

    CAS  PubMed  Google Scholar 

  185. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342:673–80.

    CAS  PubMed  Google Scholar 

  186. Mitsuhashi T, Miyajima M, Saitoh R, Nakao Y, Hishii M, Arai H. Spontaneous carotid-cavernous fistula in a patient with Ehlers-Danlos syndrome type IV—case report. Neurol Med Chir (Tokyo). 2004;44:548–53.

    PubMed  Google Scholar 

  187. Halbach VV, Higashida RT, Dowd CF, Barnwell SL, Hieshima GB. Treatment of carotid-cavernous fistulas associated with Ehlers-Danlos syndrome. Neurosurgery. 1990;26:1021–7.

    CAS  PubMed  Google Scholar 

  188. Horowitz MB, Purdy PD, Valentine RJ, Morrill K. Remote vascular catastrophes after neurovascular interventional therapy for type 4 Ehlers-Danlos syndrome. AJNR Am J Neuroradiol. 2000;21:974–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Schievink WI, Piepgras DG, Earnest F, Gordon H. Spontaneous carotid-cavernous fistulae in Ehlers-Danlos syndrome type IV. Case Rep J Neurosurg. 1991;74:991–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix 14.1: Direct Carotid-Cavernous Fistulas

Appendix 14.1: Direct Carotid-Cavernous Fistulas

1.1 Direct CC Fistulas: Clinical Features

  1. 1.

    Causes

    1. (a)

      Trauma (most common cause)

      1. (i)

        CC fistula was found in 3.8% of patients with skull base fracture [155].

    2. (b)

      Ruptured cavernous segment ICA aneurysm (cause of ≤20% of direct CC fistulas [156,157,158])

    3. (c)

      Ehlers-Danlos Type IV [159] (see separate discussion below)

    4. (d)

      Fibromuscular dysplasia [160]

    5. (e)

      Pseudoxanthoma elasticum

    6. (f)

      Iatrogenic causes: CCF following:

      1. (i)

        Endoscopic sinus surgery.

      2. (ii)

        Transsphenoidal pituitary surgery [161].

      3. (iii)

        Trigeminal balloon microcompression gangliolysis [162].

      4. (iv)

        Perforation of the meningohypophyseal trunk during embolization of a meningioma [163].

      5. (v)

        Pipeline flow-diversion for cavernous aneurysm [164, 165].

    7. (g)

      Fungal arteritis associated with:

      1. (i)

        Osteogenesis imperfecta [166].

  2. 2.

    Anatomy

    1. (a)

      ICA defect:

      1. (i)

        Most direct fistulas are a single hole measuring 2–6 mm in diameter [167].

      2. (ii)

        Most common location the defect in traumatic cases is the horizontal cavernous segment [167].

      3. (iii)

        May consist of more than one defect in the ICA (e.g., “double-hole” fistula) or a complete transection of the ICA.

      4. (iv)

        Bilateral traumatic CC fistulas are present in 1–2% of cases [157, 168]

    2. (b)

      Venous drainage:

      1. (i)

        Cavernous sinus.

        • Retrograde intracranial venous flow is present in 9% of patients [169].

  3. 3.

    Presentation

    1. (a)

      Classic description: Pulsating exophthalmos.

    2. (b)

      Most frequent presentation: Exophthalmia with pulsating conjunctival hyperemia and vascular murmur [156].

    3. (c)

      Severity of symptoms depends on the cause of fistula and the severity of the ICA lesion.

    4. (d)

      Common findings include injection and chemosis, proptosis, elevated intraocular pressure, ophthalmoplegia, and a periorbital bruit.

      1. (i)

        The sixth cranial nerve is most commonly affected [117].

      2. (ii)

        A third cranial nerve palsy, when present, may or may not be pupil-sparing (in contrast to third cranial nerve palsies due to a posterior communicating artery aneurysm, which almost invariably has pupillary involvement).

      3. (iii)

        Rarely, seventh cranial nerve dysfunction is present [170].

    5. (e)

      A bruit is present in 80% of cases [157].

    6. (f)

      Cerebral ischemia of the ipsilateral hemisphere can occur if the ICA flow is diverted into the cavernous sinus (i.e., a functional ICA occlusion is present, even if the vessel is physically patent) and collateral circulation is insufficient. A direct CC fistula may also act as a sump and divert flow from major intracranial arteries such as the p-comm [169].

  4. 4.

    Imaging

    1. (a)

      CT

      1. (i)

        In traumatic cases, a fine-cut head CT should be obtained to assess for skull fractures.

      2. (ii)

        Skull fractures are present in 7–17% of traumatic CC fistula cases.

      3. (iii)

        CTA may show occlusion of the ICA or engorgement of the cavernous sinus.

    2. (b)

      MRA: Elliptical centric time-resolved imaging of contrast kinetics (EC-TRICKS) has provided good imaging of a direct CC fistula [171].

    3. (c)

      Angiography

      1. (i)

        A catheter angiogram remains the gold standard for a complete evaluation of a direct CC fistula [101].

      2. (ii)

        Contralateral carotid and vertebral injections should be done to assess collateral circulation.

      3. (iii)

        The anatomy of high-flow fistulas are difficult to discern, particularly if all of the contrast is diverted into the cavernous sinus. Helpful angiographic techniques:

        • Mehringer–Hieshima maneuver [172]: Low-rate injection (2–3 mL/s) into the ipsilateral ICA while manual compression is applied to the ipsilateral CCA. Flow through the fistula is reduced to make it easier to see.

        • Huber maneuver [173] (aka Allcock’s test): Selective injection of the dominant vertebral artery while manual compression is applied to the ipsilateral CCA. The fistula will opacify by retrograde flow.

1.2 Direct CC Fistulas: Management

Spontaneous closure of direct CC fistulas occurs, but it is rare [158]. Some small asymptomatic direct fistulas can be left untreated, but most do require intervention. Further discussion of the management of cavernous segment ICA aneurysms is in Chap. 13.

  1. 1.

    Manual compression

    1. (a)

      Technique: The patient is instructed to use the opposite hand to locate the pulse of the carotid artery in the mid-neck region just lateral to the trachea. Gradually increasing pressure is applied until the palpable pulse is stopped. The opposite hand is used in case hemispheric ischemia develops. Compression is maintained for 10–15 s at a time, 2–3 times an hour.

      1. (i)

        Contraindications: Cervical carotid artery disease (atherosclerosis, dissection), sick sinus syndrome, poor patient compliance.

      2. (ii)

        Results: 17% of patients with a direct CC fistula had complete closure of the fistula with no recurrence either clinically or at angiography done 1 year later [103].

  2. 2.

    Cavernous sinus embolization

    1. (a)

      Transarterial

      1. (i)

        Detachable balloons

        • Cavernous sinus embolization with detachable balloons is associated with a fistula occlusion rate of ~90% with preservation of the ICA in 60–88% of cases [61, 168, 174]. Detachable balloons are not currently available in the United States, but they are still in use in other countries [175, 176].

      2. (ii)

        Coils [177, 178]

        • Coil embolization is most useful for the treatment of direct CC fistulas due to a ruptured cavernous segment aneurysm [176]. Transarterial embolization of traumatic CC fistulas can be problematic, particularly when the defect in the wall of the ICA is large. An initial closure of the fistula may be obtained, but the coils may migrate within the cavernous sinus over time, leading to a recurrence of the fistula. The authors of this handbook have witnessed this scenario repeatedly.

        • Coils or balloons + liquid embolics

          • Transarterial embolization of the cavernous sinus with coils, combined with glue (NBCA) or Onyx, can be effective in select cases [175].

    2. (b)

      Access to the cavernous sinus can even be reached through the vertebral artery [179].

    3. (c)

      Transvenous

      1. (i)

        Transvenous embolization with coils alone seems to be more effective than transarterial embolization with coils alone, likely because better microcatheter positioning is possible and tighter packing of the cavernous sinus can be achieved [177, 178].

    4. (d)

      Superior ophthalmic vein approach [67].

  3. 3.

    Stenting

    1. (a)

      Stent-assisted embolization [180].

    2. (b)

      Covered stent repair of the ICA [181, 182].

    3. (c)

      Pipeline flow-diversion is being used to augment coil embolization, particularly in the case of fistulas caused by ruptured cavernous carotid aneurysm [183].

  4. 4.

    Carotid sacrifice

    1. (a)

      Parent vessel occlusion is a valid option, but should be preceded by balloon test occlusion.

1.3 Ehlers-Danlos Type IV

Ehlers-Danlos Type IV (aka vascular type) is a rare autosomal dominant collagen-vascular disorder. Type IV accounts for 4% of all Ehlers-Danlos cases and is the most severe form of the disease.

  1. 1.

    Diagnosis

    1. (a)

      Four clinical criteria [184]:

      1. (i)

        Easy bruising

      2. (ii)

        Thin skin with visible veins

      3. (iii)

        Characteristic facial features

      4. (iv)

        Rupture of arteries, uterus, or intestines

    2. (b)

      Confirmation of diagnosis:

      1. (i)

        Cultured fibroblasts synthesize abnormal type III procollagen molecules or identification of a mutation in the gene for type III procollagen [185].

  2. 2.

    Pathophysiology

    1. (a)

      Type III collagen is decreased or absent.

    2. (b)

      The vessels in affected patients have reduced total collagen content and have thin walls with irregular elastic fibrils and reduced cross-sectional area.

  3. 3.

    Epidemiology

    1. (a)

      Very rare. Prevalence is unknown.

  4. 4.

    Clinical features

    1. (a)

      Hypermobility of large joints and hyperextensibility of the skin, features of the more common forms of Ehlers-Danlos syndrome are unusual in Type IV.

    2. (b)

      Median life expectancy is 48 years [185].

      1. (i)

        Complications are rare in childhood; 25% of patients have a first complication by the age of 20 years and more than 80% have at least one complication by the age of 40 [185].

      2. (ii)

        Most deaths result from arterial dissection or rupture [185].

    3. (c)

      Cerebrovascular manifestations

      1. (i)

        About 10% of patients have an arterial problem affecting the central nervous system [185].

      2. (ii)

        Direct CC fistulas

        • Most common cerebrovascular complication.

        • Patients are predominantly female [186].

        • May be bilateral [187].

        • Endovascular treatment of direct CC fistulas in patients with Ehlers Danlos IV is very hazardous because of the fragility of the vessels [159, 187, 188].

        • A review of published reports of diagnostic cerebral angiography in patients with Elhers-Danlos IV, the overall morbidity was 36% and mortality was 12% [189]. In another report, two of four patients died due to remote vascular injuries around the time of their neurointerventional procedures [188].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrigan, M.R., Deveikis, J.P. (2018). Dural Arteriovenous Fistulas. In: Handbook of Cerebrovascular Disease and Neurointerventional Technique. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-319-66779-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66779-9_14

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-66777-5

  • Online ISBN: 978-3-319-66779-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics