Skip to main content

Full Rank Representation of Real Algebraic Sets and Applications

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10490))

Included in the following conference series:

Abstract

We introduce the notion of the full rank representation of a real algebraic set, which represents it as the projection of a union of real algebraic manifolds \(V_{\mathbb {R}}(F_i)\) of \(\mathbb {R}^m\), \(m\ge n\), such that the rank of the Jacobian matrix of each \(F_i\) at any point of \(V_{\mathbb {R}}(F_i)\) is the same as the number of polynomials in \(F_i\).

By introducing an auxiliary variable, we show that a squarefree regular chain T can be transformed to a new regular chain C having various nice properties, such as the Jacobian matrix of C attains full rank at any point of \(V_{\mathbb {R}}(C)\). Based on a symbolic triangular decomposition approach and a numerical critical point technique, we present a hybrid algorithm to compute a full rank representation.

As an application, we show that such a representation allows to better visualize plane and space curves with singularities. Effectiveness of this approach is also demonstrated by computing witness points of polynomial systems having rank-deficient Jacobian matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvandi, P., Chen, C., Hashemi, A., Maza, M.M.: Regular chains under linear changes of coordinates and applications. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 30–44. Springer, Cham (2015). doi:10.1007/978-3-319-24021-3_3

    Chapter  Google Scholar 

  2. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comput. 28(1–2), 105–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brake, D., Hauenstein, J., Liddell, A.: Validating the completeness of the real solution set of a system of polynomial equations. ISSAC 2016, 143–150 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Caire, L.: Plane curves as projections of non singular space curves. Manuscripta Math. 67(1), 433–450 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C., Davenport, J., May, J., Moreno Maza, M., Xia, B., Xiao, R.: Triangular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C., Wu, W.: A numerical method for computing border curves of bi-parametric real polynomial systems and applications. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 156–171. Springer, Cham (2016). doi:10.1007/978-3-319-45641-6_11

    Chapter  Google Scholar 

  8. Daouda, D., Mourrain, B., Ruatta, O.: On the computation of the topology of a non-reduced implicit space curve. ISSAC 2008, 47–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, Heidelberg (2013). doi:10.1007/978-1-4612-5350-1

    MATH  Google Scholar 

  10. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, Heidelberg (1997). doi:10.1007/978-1-4757-3849-0

    MATH  Google Scholar 

  11. Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl. Math. 125(1), 105–119 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hauenstein, J., Sommese, A.: What is numerical algebraic geometry. J. Symb. Comp. 79, 499–507 (2017). Part 3

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong, H., El Din, M.S.: Variant quantifier elimination. J. Symb. Comp. 47(7), 883–901 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hong, H.: An efficient method for analyzing the topology of plane real algebraic curves. Math. Comput. Simul. 42(4), 571–582 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Imbach, R., Moroz, G., Pouget, M.: Numeric and certified isolation of the singularities of the projection of a smooth space curve. MACIS 2015, 78–92 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Jin, K., Cheng, J.: Isotopic epsilon-meshing of real algebraic space curves. SNC 2014, 118–127 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Jin, K., Cheng, J.-S., Gao, X.-S.: On the topology and visualization of plane algebraic curves. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 245–259. Springer, Cham (2015). doi:10.1007/978-3-319-24021-3_19

    Chapter  Google Scholar 

  18. Labs, O.: A list of challenges for real algebraic plane curve visualization software. In: Emiris, I.Z., Sottile, F., Theobald, T. (eds.) Nonlinear Computational Geometry, pp. 137–164. Springer, New York (2010)

    Google Scholar 

  19. Lasserre, J., Laurent, M., Rostalski, P.: Semidefinite characterization and computation of zero-dimensional real radical ideals. Found. Comput. Math. 8(5), 607–647 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lecerf, G.: Quadratic newton iteration for systems with multiplicity. Found. Comput. Math. 2(3), 247–293 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218. Springer, Heidelberg (2003). doi:10.1007/978-1-4419-9982-5

    Google Scholar 

  22. Leykin, A.: Numerical primary decomposition. ISSAC 2008, 165–172 (2008)

    Article  MathSciNet  Google Scholar 

  23. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. TCS 359(1), 111–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, T.Y.: Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numerica 6, 399–436 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, Y., Wang, C., Zhi, L.: A certificate for semidefinite relaxations in computing positive-dimensional real radical ideals. J. Symb. Comput. 72, 1–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros of polynomial systems. ISSAC 2011, 249–256 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Morrow, J.A., Kodaira, K.: Complex Manifolds, vol. 355. American Mathematical Society, Providence (1971)

    MATH  Google Scholar 

  28. Ojika, T., Watanabe, S., Mitsui, T.: Deflation algorithm for the multiple roots of a system of nonlinear equations. J. Math. Anal. Appl. 96(2), 463–479 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rouillier, F., Roy, M.F., El Din, M.S.: Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complex. 16(4), 716–750 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. El Din, M.S., Schost, É.: Properness defects of projections and computation of at least one point in each connected component of a real algebraic set. Discrete Comput. Geom. 32(3), 417–430 (2004)

    MathSciNet  MATH  Google Scholar 

  32. El Din, M.S., Spaenlehauer, P.: Critical point computations on smooth varieties: degree and complexity bounds. In: ISSAC 2016, pp. 183–190 (2016)

    Google Scholar 

  33. Sommese, A., Verschelde, J., Wampler, C.: Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6), 2022–2046 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sommese, A., Wampler, C.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific Press, Singapore (2005)

    Book  MATH  Google Scholar 

  35. Wu, W., Reid, G.: Finding points on real solution components and applications to differential polynomial systems. ISSAC 2013, 339–346 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hoon Hong and anonymous reviewers for their helpful comments. This work is partially supported by the projects NSFC (11471307, 11671377, 61572024), cstc2015jcyjys40001, and the Key Research Program of Frontier Sciences of CAS (QYZDB-SSW-SYS026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, C., Wu, W., Feng, Y. (2017). Full Rank Representation of Real Algebraic Sets and Applications. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2017. Lecture Notes in Computer Science(), vol 10490. Springer, Cham. https://doi.org/10.1007/978-3-319-66320-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66320-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66319-7

  • Online ISBN: 978-3-319-66320-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics