Skip to main content

Genetic Transformation of Setaria: A New Perspective

  • Chapter
  • First Online:
The Foxtail Millet Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Setaria italica and its wild progenitor Setaria viridis, collectively called Setaria, have recently emerged as promising translational research models for studying stress resistance, domestication, C4 grass biology, and bioenergy traits. However, genetic engineering of Setaria remains challenging without the availability of robust transformation methods. Their recalcitrance to in vitro manipulation and transformation restricts the use of transgenesis and contemporary genome editing tools for crop functional genomics research. Not much work on transgenesis in Setaria has been reported. In the present chapter we aim at updating available information related to Setaria tissue culture and genetic transformation. In addition, we discuss different factors and methods to ease the transformation studies in Setaria. The advanced or alternative gene transformation methods with respect to Setaria are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol 57:271–283

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP et al (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520. doi:10.1105/tpc.16.00196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amadou I, Gounga ME, Le GW (2013) Millets: nutritional composition, some health benefits and processing-A review. Emirates J Food Agric 25:501–508. doi:10.9755/ejfa.v25i7.12045

    Article  Google Scholar 

  • Aulinger I, Peter S, Schmid J, Stamp P (2003) Gametic embryos of maize as a target for biolistic transformation: comparison to immature zygotic embryos. Plant Cell Rep 21:585–591. doi:10.1007/s00299-002-0556-7

    CAS  PubMed  Google Scholar 

  • Bai H, Cao Y, Quan J, Dong L, Li Z, Zhu Y, Zhu L, Dong Z, Li D (2013) Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a landrace cultivar of foxtail millet. PLoS ONE 8:e73514. doi:10.1371/journal.pone.0073514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bairu MW, Aremu AO, VanStaden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Ban Y, Kokuba T, Miyaji Y (1971) Production of haploid plant by anther culture of Setaria italica. Bull Fac Agric Kagoshima Univ 21:77–81

    Google Scholar 

  • Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35

    Article  CAS  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Benabdelmouna A, Shi Y, Abirached-Darmency M, Darmency H (2001) Genomic in situ hybridization (GISH) discriminates between the A and the B genomes in diploid and tetraploid Setaria species. Genome 44:685–690. doi:10.1139/gen-44-4-685

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561. doi:10.1038/nbt.2196

    Article  CAS  PubMed  Google Scholar 

  • Benson EE (2000) In vitro plant recalcitrance: an introduction. Vitro Cell Dev Biol Plant 36(3):141–148

    Article  Google Scholar 

  • Bhaskaran S, Smith RH (1990) Regeneration in cereal tissue culture: a review. Crop Sci 30:1328–1336

    Article  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3468–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodríguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  CAS  PubMed  Google Scholar 

  • Brutnell TP (2015) Model grasses hold key to crop improvement. Nat Plants 1:15062. doi:10.1038/nplants.2015.62

    Article  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22:2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brutnell TP, Bennetzen JL, Vogel JP (2015) Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol 66:465–485. doi:10.1146/annurev-arplant-042811-105528

    Article  CAS  PubMed  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 44:427–435

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2009) Genetic engineering of millets: current status and future prospects. Biotechnol Lett 31:779–788

    Article  CAS  PubMed  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2011) Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 30:1759–1770. doi:10.1007/s00299-011-1084-0

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli S, Grando S (1996) Drought as a challenge for the plant breeder. Plant Growth Regul 20:149–155. doi:10.1007/BF00024011

    Article  CAS  Google Scholar 

  • Changmei S, Dorothy J (2014) Millet-the frugal grain. Int J Sci Res Rev 3:75–90

    Google Scholar 

  • Chung MH, Chen MK, Pan SM (2000) Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Res 9:471–476

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2:45–65

    Article  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Defelice MS (2002) Green foxtail, Setaria viridis (L.) P. Beauv. Weed Technol 16:253–257

    Article  Google Scholar 

  • Diao X, Duan S, Zhao L, Chen Z (1997) Tissue culture and plantlet regeneration of Setaria glauca. Plant Cell Rep 33(2):128–129

    Google Scholar 

  • Diao X, Chen Z, Duan S, Liu Y, Zhao L, Sun J (1999) Factors influencing foxtail millet embryogenic calli transformation by particle bombardment. Acta Agric Boreali Sin 14(3):31–36

    Google Scholar 

  • Diao X, Schnable J, Bennetzen JL, Li J (2014) Initiation of Setaria as a model plant. Front Agric Sci Eng 1:16. doi:10.15302/J-FASE-2014011

    Article  Google Scholar 

  • Dong Y, Duan S (1999) Establishment of embryogenic cell suspension culture and plant regeneration of millet and gene transfer. J Basic Sci Eng 7(1):34–40

    Google Scholar 

  • Dong Y, Duan S (2000) Production of transgenic millet plants via particle bombardment. Acta Bot Boreal-Occident Sin 20(2):175–178

    Google Scholar 

  • Dosad S, Chawla HS (2016) In vitro plant regeneration and transformation studies in millets: current status and future prospects. Indian J Plant Physiol 21(3):239–254

    Article  CAS  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi S, Upadhyaya H, Senthilvel S, Hash C, Fukunaga K, Diao X, Santra D, Baltensperger D, Prasad M (2012) Millets: genetic and genomic resources. In: Janick J (ed) Plant breeding reviews. Wiley-Blackwell, New York, pp 247–375

    Google Scholar 

  • Fang X, Dong K, Wang X, Liu T, He J, Ren R, Zhang L, Liu R, Liu X, Li M, Huang M, Zhang Z, Yang T (2016) A high density genetic map and QTL for agronomic and yield traits in foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genom 17:336

    Article  CAS  Google Scholar 

  • Geier T, Sangwan RS (1996) Histology and chimeral segregation reveal cell-specific differences in the competence for shoot regeneration and Agrobacterium-mediated transformation in Kohleria internode explants. Plant Cell Rep 15:386–390

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the ‘gene-jockeying’ tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George L, Eapen S (1990) High frequency plant-regeneration through direct shoot development and somatic embryogenesis from immature inflorescence cultures of finger millet (Eleusine coracana Gaertn). Euphytica 48:269–274

    Article  Google Scholar 

  • Girgi M, O’Kennedy MM, Morgenstern A, Smith G, Lörz H, Oldach KH (2002) Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R. Br. via microprojectile bombardment of scutellar tissue. Mol Breed 10:243–252

    Article  CAS  Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157

    PubMed  PubMed Central  Google Scholar 

  • Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93:9975–9979. doi:10.1073/pnas.93.18.9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–230. doi:10.1016/S1360-1385(99)01412-0

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Shillito RD, Chilton MD (1997) T-strand integration in maize protoplasts after co-delivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA 94:11726–11730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge JG, Kellogg EA (2016) Abscission zone development in Setaria viridis and its domesticated relative, Setaria italica. Amer J Bot 103:998–1005

    Article  Google Scholar 

  • Huang P, Feldman M, Schroder S, Bahri BA, Diao X, Zhi H, Estep M, Baxter I, Devos KM, Kellogg EA (2014) Population genetics of Setaria viridis, a new model system. Mol Ecol 23:4912–4925. doi:10.1111/mec.12907

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  • Jha P, Yadav CB, Anjaiah V, Bhat V (2009) In vitro plant regeneration through somatic embryogenesis and direct shoot organogenesis in Pennisetum glaucum (L.) R. Br. In Vitro Cell Dev Biol Plant 45:145–154

    Article  Google Scholar 

  • Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C, Lu Y, Zhou C, Fan D, Weng Q et al (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961. doi:10.1038/ng.2673

    Article  CAS  PubMed  Google Scholar 

  • Kishore SN, Visarada KBRS, Aravinda Lakshmi Y, Pashupatinath E, Rao SV, Seetharama N (2006) In vitro culture methods in Sorghum with shoot tips the explants material. Plant Cell Rep 25:174–182. doi:10.1007/s00299-005-0044-y

    Article  CAS  Google Scholar 

  • Koichi T, Bae CH, Seo MS, Song IJ, Lim YP, Song PS, Lee HY (2002) Overcoming of barriers to transformation in monocot plants. J Plant Biotech 4:135–141

    Google Scholar 

  • Kothari-Chajer A, Sharma M, Kachhwaha S, Kothari SL (2008) Micronutrient optimization results into highly improved in vitro plant regeneration in kodo (Paspalum scrobiculatum L.) and finger (Eleusine coracana (L.) Gaertn.) millets. Plant Cell Tissue Org Cult 94(6):105–112

    Google Scholar 

  • Kumar S, Agarwal K, Kothari SL (2001) In vitro induction and enlargement of apical domes and formation of multiple shoots in finger millet, Eleusine coracana (L.) Gaertn and crowfoot grass, Eleusine indica (L.) Gaertn. Curr Sci 81:1482–1485

    CAS  Google Scholar 

  • Langridge P, Brettschneider R, Lazzeri P, Lorz H (1992) Transformation of cereals via Agrobacterium and pollen tube pathway: a critical assessment. Plant J 2:631–638

    Article  CAS  Google Scholar 

  • Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the panicoid grasses. J Exp Bot 62:3031–3037

    Article  CAS  PubMed  Google Scholar 

  • Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14:736–740

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yue J, Wu X, Xu C, Yu J (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65:5415–5427. doi:10.1093/jxb/eru302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZY, Wang N, Dong L, Bai H, Quan JZ, Liu L, Dong ZP (2015) Differential gene expression in foxtail millet during incompatible interaction with Uromyces Setariae-italicae. PLoS ONE 10:e0123825. doi:10.1371/journal.pone.0123825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Dong Y, Li C, Pan Y, Yu J (2017) SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Front Plant Sci 7:2053

    PubMed  PubMed Central  Google Scholar 

  • Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep 28(7):1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yu J, Zhao Q, Zhu D, Ao G (2005) Genetic transformation of millet (Setaria italica) by Agrobacterium-mediated. Chin J Agr Biotechnol 13:32–37

    CAS  Google Scholar 

  • Liu YH, Yu JJ, Ao GM, Zhao Q (2007) Factors influencing Agrobacterium-mediated transformation of foxtail millet (Setaria italica). Chin J Biochem Mol Biol 23:531–536

    CAS  Google Scholar 

  • Liu Y, Feng X, Xu Y, Yu J, Ao G, Peng Z, Zhao Q (2009) Overexpression of millet ZIP-like gene (SiPf40) affects lateral bud outgrowth in tobacco and millet. Plant Physiol Biochem 47:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Tang S, Jia G, Schnable JC, Su H, Tang C, Zhi H, Diao X (2016) The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet (Setaria italica (L.) P. Beauv). J Exp Bot 67:erw135

    Google Scholar 

  • Mandadi KK, Pyle JD, Scholthof KBG (2014) Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveal conserved and unique outcomes among C3 and C4 plant defenses. Mol Plant-Microbe Interact 27:1277–1290. doi:10.1094/MPMI-05-14-0152-R

    Article  PubMed  CAS  Google Scholar 

  • Martin AP, Palmer WM, Brown C, Abel C, Lunn JE, Furbank RT, Grof CPL (2016) A developing Setaria viridis internode: an experimental system for the study of biomass generation in a C4 model species. Biotechnol Biofuels 9:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins PK, Nakayama TJ, Ribeiro AP, Cunha BADBd, Nepomuceno AL, Harmon FG, Kobayashi AK, Molinari HBC (2015) Setaria viridis floral-dip: a simple and rapid Agrobacterium-mediated transformation method. Biotechnol Rep 6:61–63

    Article  Google Scholar 

  • Mauro-Herrera M, Doust AN (2016) Development and genetic control of plant architecture and biomass in the panicoid grass, Setaria. PLoS ONE 11:e0151346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Dev GK, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32(10):1557–1574

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2017) Genetic determinants of drought stress tolerance in Setaria. In: Doust A, Diao X (eds) Genetics and genomics of Setaria. Springer, pp 267–289

    Google Scholar 

  • Muthamilarasan M, Suresh BV, Pandey G, Kumari K, Parida SK, Prasad M (2014a) Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 21:41–52

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Khandelwal R, Yadav CB, Bonthala VS, Khan Y, Prasad M (2014b) Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS ONE 9:e109920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Mishra AK, Khandelwal R, Khan Y, Roy R, Prasad M (2014c) C2H2-type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Funct Integr Genom 14:531–554

    Article  CAS  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishakar J, Shweta S, Nawaz K, Prasad M (2015a) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:910

    PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Khan Y, Jaishankar J, Shweta S, Lata C, Prasad M (2015b) Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering. Front Plant Sci 6:965

    PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2016a) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Mangu VR, Zandkarimi H, Prasad M, Baisakh N (2016b) Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice. Sci Rep 6:24008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadolska-Orczyk A, Orczyk W, Przetakiewicz A (2000) Agrobacterium-mediated transformation of cereals–from technique development to application. Acta Physiol Plant 22:77–88

    Article  CAS  Google Scholar 

  • Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newell CA (2000) Plant transformation technology; developments and applications. Mol Biotechnol 16:53–65

    Article  CAS  PubMed  Google Scholar 

  • O’Kennedy MM, Smith G, Botha FC (2004a) Improved regeneration efficiency of a pearl millet (Pennisetum glaucum [L.] R. Br.) breeding line. South Afr J Bot 70(4):502–508

    Article  Google Scholar 

  • O’Kennedy MM, Burger JT, Botha FC (2004b) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  PubMed  CAS  Google Scholar 

  • O’Kennedy MM, Grootboom A, Shewry PR (2006) Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci 44:224–235

    Article  CAS  Google Scholar 

  • Osuna-Avila P, Nava-Cedillo A, Jofre-Garfias AE, Cabrera-Ponce JL (1995) Plant regeneration from shoot apex explant of foxtail millet. Plant Cell Tissue Org Cult 40:33–35

    Article  Google Scholar 

  • Pal AK, Acharya K, Ahuja PS (2012) Endogenous auxin level is a critical determinant for in vitro adventitious shoot regeneration in potato (Solanum tuberosum L.). J Plant Biochem Biotechnol 21:205–212

    Article  CAS  Google Scholar 

  • Pant SR, Irigoyen S, Doust AN, Scholthof KG, Mandadi KK (2016) Setaria: a food crop and translational research model for C4 grasses. Front Plant Sci 15:1885

    Google Scholar 

  • Patnaik D, Khurana P (2001) Wheat biotechnology: a minireview. Eur J Biotech 4:1–29

    Google Scholar 

  • Plaza-Wuthrich S, Tadele Z (2012) Millet improvement through regeneration and transformation. Biotechnol Mol Biol Rev 7(2):48–61

    Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 42:205–225

    Article  CAS  Google Scholar 

  • Qin F, Zhao Q, Ao G, Yu J (2008) Co-suppression of Si401 a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163(1):103–111. doi:10.1007/s10681-007-9610-4

    Article  CAS  Google Scholar 

  • Rachie KO (1975) The millet: importance, utilization and outlook. International Crop Research Institute for Arid Tropics, Hyderabad, India

    Google Scholar 

  • Rao AM, Kavi Kishor PB, Ananda Reddy L, Vaidvanath K (1988) Callus induction and high frequency plant regeneration in Italian millet (Setaria italica). Plant Cell Rep 7:557–559

    Article  CAS  PubMed  Google Scholar 

  • Reddy LA, Vaidyanath K (1988) Regeneration of foxtail millet plants from calli derived from immature glumes. Indian J Plant Physiol 31:290–292

    Google Scholar 

  • Reddy LA, Vaidyanath K (1990) Callus formation and regeneration in two induced mutants of foxtail millet (Setaria italica). J Genet Breed 44:133–138

    Google Scholar 

  • Rout GR, Samataray S, Das D (1998) In vitro selection and characterization of Ni-tolerant callus lines of Setaria italica L. Acta Physiol Plant 20:269–275

    Article  CAS  Google Scholar 

  • Saha P, Blumwald E (2016) Spike-dip transformation of Setaria viridis. Plant J 86:89–101

    Article  CAS  PubMed  Google Scholar 

  • Saha D, Dipnarayan S, Channabyre Gowda MV, Lalit A, Manjusha V, Bansal KC (2016) Genetic and genomic resources of small millets. CRC Crit Rev Plant Sci 35:56–79

    Article  CAS  Google Scholar 

  • Satish L, Rency AS, Rathinapriya P, Ceasar SA, Pandian S, Rameshkumar R, Rao TB, Balachandran SM, Ramesh M (2016) Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusinecoracana (L.) Gaertn). Plant Cell Tissue Org Cult 124:15–31

    Article  CAS  Google Scholar 

  • Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell Tissue Org Cult 105:93–104

    Article  CAS  Google Scholar 

  • Sinclair TR, Purcell LC, Sneller CH (2004) Crop transformation and the challenge to increase yield potential. Trends Plant Sci 9:70–75

    Article  CAS  PubMed  Google Scholar 

  • Sinha NR, Kellogg EA (1996) Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family. Am J Bot 83:1458–1470

    Article  Google Scholar 

  • Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plantarum 55:1–15

    Article  CAS  Google Scholar 

  • Tadele Z (2016) Drought adaptation in millets. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives. InTech, Rijeka, pp 639–662. doi:10.5772/61929

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  CAS  PubMed  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Van Eck J, Swartwood K (2015) Setaria viridis. Methods Mol Biol 1223:57–67

    Article  PubMed  CAS  Google Scholar 

  • Rashid VA (2003) Somatic embryogenesis or shoot formation following high 2,4-D pulse-treatment of mature embryos of Paspalum scrobiculatum. Biol Plant 46:297–300

    Google Scholar 

  • Vishnoi RK, Kothari SL (1996) Somatic embryogenesis and efficient plant regeneration in immature inflorescence culture of Setaria italica (L.) Beauv. Cereal Res Commun 24(3):291–297

    Google Scholar 

  • Vogel J, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21–3. Plant Cell Rep 27:471–478

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li W, Diao X (2003) Genetic transformation of foxtail millet mediated by Agrobacterium tumefaciens. J Hebei Agric Sci 7(4):1–6

    Google Scholar 

  • Wang M, Pan Y, Li C, Liu C, Zhao Q, Ao GM, Yu JJ (2011) Culturing of immature inflorescences and Agrobacterium-mediated transformation of foxtail millet (Setaria italica). Afr J Biotechnol 10:16466–16479. doi:10.5897/ajb10.2330

    CAS  Google Scholar 

  • Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhao Q, Yu J (2014) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol 14(1):290. doi:10.1186/s12870-014-0290-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Z, Wei Z, Yang L (1983) Tissue culture of Setaria italica and Setaria lutescens. Plant Physiol Commun 5:40

    Google Scholar 

  • Xu Z, Wang D, Yang L, Wei Z (1984) Somatic embryogenesis and plant regeneration in callus cultured immature inflorescence of Setaria italica. Plant Cell Rep 3:149–150

    Article  CAS  PubMed  Google Scholar 

  • Xue CX, Zhi H, Fang X, Liu X, Tang S, Chai Y, Zhao B, Jia G, Diao X (2016) Characterization and fine mapping of SiDWARF2 (D2) in foxtail millet. Crop Sci 56:95–103. doi:10.2135/cropsci2015.05.0331

    Article  CAS  Google Scholar 

  • Yang L, Xu Z (1985) Somatic embryogenesis and plant regeneration from cell suspension culture of Setaria italica (L.) Beauv. Acta Biologiae Experimentalis Sin 18(4):493–498

    Google Scholar 

  • Yang X, Wan Z, Perry L, Lu H, Wang Q, Zhao C, Li J, Xie F, Yu J, Cui T, Wang T, Li M, Ge Q (2012) Early millet use in northern China. Proc Natl Acad Sci USA 109:3726–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yemets A, Sheremet Y, Vissenberg K, Van Orden J, Verbelen JP, Blume YB (2008) Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells. Cell Biol Int 32:630–637

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554. doi:10.1038/nbt.2195

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred DA, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newslett 72:34–37

    Google Scholar 

  • Zhou GY, Weng J, Zhen YS, Huang JG, Qian SY, Liu GL (1983) Introduction of exogenous DNA into cotton embryos. In: Wu R, Grossman L, Molddave K (eds) Methods in enzymology, recombination DNA, Part C, vol 101. Academic Press, New York, pp 433–481

    Google Scholar 

  • Zuniga-Soto E, Mullins E, Dedicova B (2015) Ensifer mediated transformation: an efficient non-Agrobacterium protocol for the genetic modification of rice. Springerplus 4:600. doi:10.1186/s40064-015-1369-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Studies on millet genomics in Dr. Manoj Prasad’s laboratory are supported by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India [Grant No. EMR/2015/000464], by Department of Biotechnology, Govt. of India [Grant No. BT/HRD/NBA/37/01/2014], and by Core Grant of National Institute of Plant Genome Research (NIPGR), New Delhi, India. Priyanka Sood acknowledges the Young Scientist Award from DST-SERB, Govt. of India [File No. YSS/2014/000870/LS].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sood, P., Prasad, M. (2017). Genetic Transformation of Setaria: A New Perspective. In: Prasad, M. (eds) The Foxtail Millet Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-65617-5_9

Download citation

Publish with us

Policies and ethics