Skip to main content

Nanopore Membranes for Separation and Sensing

A “Prosporous” Future

  • Chapter
  • First Online:
Miniature Fluidic Devices for Rapid Biological Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

During the last 20 years, the use of nanopore membranes to separate molecules depending on their size, charge or other characteristics, have increased in interest. These more ordered and defined nanopores have several advantages compared to traditional ultrafiltration membranes and provide possibilities to combine with, e.g., both electrical and optical sensing schemes. In this chapter, we discuss some of the more common nanopore membranes and how they can be used both for separation and sensing of analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yu S, Lee SB, Kang M, Martin CR (2001) Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nano Lett 1(9):495–498

    Article  CAS  Google Scholar 

  2. Lee SB, Mitchell DT, Trofin L, Nevanen TK, Söderlund H, Martin CR (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296(5576):2198–2200

    Article  CAS  Google Scholar 

  3. Jirage KB, Hulteen JC, Martin CR (1997) Nanotubule-based molecular-filtration membranes. Science 278(5338):655–658

    Article  CAS  Google Scholar 

  4. Wirtz M, Parker M, Kobayashi Y, Martin CR (2002) Molecular sieving and sensing with gold nanotube membranes. Chem Record 2(4):259–267

    Article  CAS  Google Scholar 

  5. de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139

    Article  Google Scholar 

  6. Han J, Fu J, Schoch RB (2008) Molecular sieving using nanofilters: past, present and future. Lab Chip 8(1):23–33

    Article  CAS  Google Scholar 

  7. Huang M, Galarreta BC, Cetin AE, Altug H (2013) Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. Lab Chip 13(24):4841–4847

    Article  CAS  Google Scholar 

  8. Deen WM (1987) Hindered transport of large molecules in liquid-filled pores. AIChE J 33(9):1409–1425

    Article  CAS  Google Scholar 

  9. Paine PL, Scherr P (1975) Drag coefficients for the movement of rigid spheres through liquid-filled cylindrical pores. Biophys J 15(10):1087–1091

    Article  CAS  Google Scholar 

  10. Bungay PM, Brenner H (1973) The motion of a closely-fitting sphere in a fluid-filled tube. Int J Multiph Flow 1(1):25–56

    Article  Google Scholar 

  11. Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38(2):225–243

    CAS  Google Scholar 

  12. Brenner H, Gaydos LJ (1977) The constrained brownian movement of spherical particles in cylindrical pores of comparable radius. J Colloid Interface Sci 58(2):312–356

    Article  Google Scholar 

  13. Dechadilok P, Deen WM (2006) Hindrance factors for diffusion and convection in pores. Ind Eng Chem Res 45(21):6953–6959

    Article  CAS  Google Scholar 

  14. Snyder JL, Clark A Jr, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, McGrath JL (2011) An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes. J Membr Sci 369(1–2):119–129

    Article  CAS  Google Scholar 

  15. Bean CP, Doyle MV, Entine G (1970) Etching of submicron pores in irradiated mica. J Appl Phys 41(4):1454–1459

    Article  CAS  Google Scholar 

  16. Fleischer RL, Alter HW, Furman SC, Price PB, Walker RM (1972) Particle track etching. Divers Technol Range Virus Identif Uranium Explor 178(4058):255–263

    CAS  Google Scholar 

  17. Quinn JA, Anderson JL, Ho WS, Petzny WJ (1972) Model pores of molecular dimension: the preparation and characterization of track-etched membranes. Biophys J 12(8):990–1007

    Article  CAS  Google Scholar 

  18. Apel P (2001) Track etching technique in membrane technology. Radiat Meas 34(1–6):559–566

    Article  CAS  Google Scholar 

  19. Apel PY, Korchev YE, Siwy Z, Spohr R, Yoshida M (2001) Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum Methods Phys Res Sect B 184(3):337–346

    Article  CAS  Google Scholar 

  20. Stroeve P, Ileri N Biotechnical and other applications of nanoporous membranes. In: Trends in biotechnology 29(6):259–266

    Google Scholar 

  21. Diggle JW, Downie TC, Goulding CW (1969) Anodic oxide films on aluminum. Chem Rev 69(3):365–405

    Article  CAS  Google Scholar 

  22. Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100(9):411–419

    Article  CAS  Google Scholar 

  23. Wood GC, O’Sullivan JP, Vaszko B (1968) The direct observation of barrier layers in porous anodic oxide films. J Electrochem Soc 115(6):618–620

    Article  CAS  Google Scholar 

  24. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468

    Article  CAS  Google Scholar 

  25. Lee W, Ji R, Gosele U, Nielsch K (2006) Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater 5(9):741–747

    Article  CAS  Google Scholar 

  26. Masuda H (2005) Highly ordered nanohole arrays in anodic porous alumina. In: Ordered porous nanostructures and applications. Springer, US, Boston, MA, pp 37–55

    Google Scholar 

  27. Hideki M, Masahiro S (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35(1B):L126

    Google Scholar 

  28. Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71(19):2770–2772

    Article  CAS  Google Scholar 

  29. Asoh H, Nishio K, Nakao M, Tamamura T, Masuda H (2001) Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J Electrochem Soc 148(4):B152–B156

    Article  CAS  Google Scholar 

  30. Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gosele U (2008) Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat Nano 3(4):234–239

    Article  CAS  Google Scholar 

  31. Chen W, Wu J-S, Xia X-H (2008) Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano 2(5):959–965

    Article  CAS  Google Scholar 

  32. Robatjazi H, Bahauddin SM, Macfarlan LH, Fu S, Thomann I (2016) Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication. Chem Mater 28(13):4546–4553

    Article  CAS  Google Scholar 

  33. Masuda H, Hasegwa F, Ono S (1997) Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J Electrochem Soc 144(5):L127–L130

    Article  CAS  Google Scholar 

  34. Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268(5211):700–702

    Article  CAS  Google Scholar 

  35. Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67(13):1920–1928

    Article  CAS  Google Scholar 

  36. Tong HD, Jansen HV, Gadgil VJ, Bostan CG, Berenschot E, van Rijn CJM, Elwenspoek M (2004) Silicon nitride nanosieve membrane. Nano Lett 4(2):283–287

    Article  CAS  Google Scholar 

  37. Jonsson MP, Dahlin AB, Feuz L, Petronis S, Höök F (2010) Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem 82(5):2087–2094

    Article  CAS  Google Scholar 

  38. Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81(11):4308–4311

    Article  CAS  Google Scholar 

  39. Escobedo C, Brolo AG, Gordon R, Sinton D (2012) Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 12(3):1592–1596

    Article  CAS  Google Scholar 

  40. Vlassiouk I, Apel PY, Dmitriev SN, Healy K, Siwy ZS (2009) Versatile ultrathin nanoporous silicon nitride membranes. Proc Natl Acad Sci 106(50):21039–21044

    Article  CAS  Google Scholar 

  41. Yanik AA, Huang M, Artar A, Chang TY, Altug H (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96(2)

    Google Scholar 

  42. Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H (2010) An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10(12):4962–4969

    Article  CAS  Google Scholar 

  43. Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. P Natl Acad Sci USA 108(29):11784–11789

    Article  CAS  Google Scholar 

  44. Kumar S, Cherukulappurath S, Johnson TW, Oh S-H (2014) Millimeter-sized suspended plasmonic nanohole arrays for surface-tension-driven flow-through SERS. Chem Mater 26(22):6523–6530

    Article  CAS  Google Scholar 

  45. Dahlin AB, Mapar M, Xiong K, Mazzotta F, Höök F, Sannomiya T (2014) Plasmonic nanopores in metal-insulator-metal films. Adv Opt Mat n/a–n/a

    Google Scholar 

  46. Stein K, van Henk W, van Cees R, Wietze N, Gijs K, Miko E (2001) Fabrication of microsieves with sub-micron pore size by laser interference lithography. J Micromech Microeng 11(1):33

    Article  Google Scholar 

  47. van Rijn CJM (2006) Laser interference as a lithographic nanopatterning tool. MOEMS 5(1), 011012–011012-6

    Google Scholar 

  48. Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445(7129):749–753

    Article  CAS  Google Scholar 

  49. Emilsson G, Schoch RL, Feuz L, Höök F, Lim RYH, Dahlin AB (2015) Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to. ACS Appl Mat Interfaces

    Google Scholar 

  50. van Reis R, Brake JM, Charkoudian J, Burns DB, Zydney AL (1999) High-performance tangential flow filtration using charged membranes. J Membr Sci 159(1–2):133–142

    Article  Google Scholar 

  51. Asatekin A, Kang S, Elimelech M, Mayes AM (2007) Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J Membr Sci 298(1–2):136–146

    Article  CAS  Google Scholar 

  52. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301–310

    Article  CAS  Google Scholar 

  53. Caspi Y, Zbaida D, Cohen H, Elbaum M (2008) Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett 8(11):3728–3734

    Article  CAS  Google Scholar 

  54. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113

    Article  Google Scholar 

  55. Zdyrko B, Luzinov I (2011) Polymer brushes by the “grafting to” method. Macromol Rapid Commun 32(12):859–869

    Article  CAS  Google Scholar 

  56. Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1):14–22

    Article  CAS  Google Scholar 

  57. Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527

    Article  CAS  Google Scholar 

  58. Tokarev I, Minko S (2009) Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv Mater 21(2):241–247

    Article  CAS  Google Scholar 

  59. Bruening ML, Dotzauer DM, Jain P, Ouyang L, Baker GL (2008) Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24(15):7663–7673

    Article  CAS  Google Scholar 

  60. Tokarev I, Minko S (2010) Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv Mater 22(31):3446–3462

    Article  CAS  Google Scholar 

  61. Zhang H, Hou X, Zeng L, Yang F, Li L, Yan D, Tian Y, Jiang L (2013) Bioinspired artificial single ion pump. J Am Chem Soc 135(43):16102–16110

    Article  CAS  Google Scholar 

  62. Zhang Z, Kong X-Y, Xiao K, Liu Q, Xie G, Li P, Ma J, Tian Y, Wen L, Jiang L (2015) Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device. J Am Chem Soc 137(46):14765–14772

    Article  CAS  Google Scholar 

  63. Liu Q, Xiao K, Wen L, Lu H, Liu Y, Kong X-Y, Xie G, Zhang Z, Bo Z, Jiang L (2015) Engineered ionic gates for ion conduction based on sodium and potassium activated nanochannels. J Am Chem Soc 137(37):11976–11983

    Article  CAS  Google Scholar 

  64. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9(7):2788–2793

    Article  CAS  Google Scholar 

  65. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chem Commun 46(11):1908–1910

    Article  CAS  Google Scholar 

  66. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5(11):1287–1291

    Article  CAS  Google Scholar 

  67. Elbert J, Krohm F, Rüttiger C, Kienle S, Didzoleit H, Balzer BN, Hugel T, Stühn B, Gallei M, Brunsen A (2014) Polymer-modified mesoporous silica thin films for redox-mediated selective membrane gating. Adv Func Mater 24(11):1591–1601

    Article  CAS  Google Scholar 

  68. Buchsbaum S, Nguyen G, Howorka S, Siwy ZS (2014) DNA-modified polymer pores allow ph- and voltage-gated control of channel flux. J Am Chem Soc

    Google Scholar 

  69. de Groot GW, Santonicola MG, Sugihara K, Zambelli T, Reimhult E, Vörös J, Vancso GJ (2013) Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. ACS Appl Mater Interfaces 5(4):1400–1407

    Article  Google Scholar 

  70. Ito Y, Ochiai Y, Park YS, Imanishi Y (1997) pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J Am Chem Soc 119(7):1619–1623

    Article  CAS  Google Scholar 

  71. Ito Y, Park YS, Imanishi Y (1997) Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes. J Am Chem Soc 119(11):2739–2740

    Article  CAS  Google Scholar 

  72. Park YS, Ito Y, Imanishi Y (1998) Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir 14(4):910–914

    Article  CAS  Google Scholar 

  73. Ito Y, Nishi S, Park YS, Imanishi Y (1997) Oxidoreduction-sensitive control of water permeation through a polymer brushes-grafted porous membrane. Macromolecules 30(19):5856–5859

    Article  CAS  Google Scholar 

  74. Park YS, Ito Y, Imanishi Y (1998) Photocontrolled gating by polymer brushes grafted on porous glass filter. Macromolecules 31(8):2606–2610

    Article  CAS  Google Scholar 

  75. Liu Dunphy DR, Atanassov P, Bunge SD, Chen Z, López GP, Boyle TJ, Brinker CJ (2004) Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Lett 4(4), 551–554

    Google Scholar 

  76. Lokuge I, Wang X, Bohn PW (2006) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(n-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization†. Langmuir 23(1):305–311

    Article  Google Scholar 

  77. Huber DL, Manginell RP, Samara MA, Kim B-I, Bunker BC (2003) programmed adsorption and release of proteins in a microfluidic device. Science 301(5631):352–354

    Article  CAS  Google Scholar 

  78. Yu Q, Shivapooja P, Johnson LM, Tizazu G, Leggett GJ, Lopez GP (2013) Nanopatterned polymer brushes as switchable bioactive interfaces. Nanoscale 5(9):3632–3637

    Article  CAS  Google Scholar 

  79. Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L (2013) Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv Mater 25(6):922–927

    Article  CAS  Google Scholar 

  80. Liu Z, Wang W, Xie R, Ju X-J, Chu L-Y (2016) Stimuli-responsive smart gating membranes. Chem Soc Rev 45(3):460–475

    Article  CAS  Google Scholar 

  81. Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305(5686):984–986

    Article  CAS  Google Scholar 

  82. Yu S, Lee SB, Martin CR (2003) Electrophoretic protein transport in gold nanotube membranes. Anal Chem 75(6):1239–1244

    Article  CAS  Google Scholar 

  83. Osmanbeyoglu HU, Hur TB, Kim HK (2009) Thin alumina nanoporous membranes for similar size biomolecule separation. J Membr Sci 343(1–2):1–6

    Article  CAS  Google Scholar 

  84. Ku J-R, Stroeve P (2004) Protein diffusion in charged nanotubes: “On–Off” behavior of molecular transport. Langmuir 20(5):2030–2032

    Article  CAS  Google Scholar 

  85. Chun K-Y, Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18(12):4653–4658

    Article  CAS  Google Scholar 

  86. Kuiper S, van Rijn CJM, Nijdam W, Elwenspoek MC (1998) Development and applications of very high flux microfiltration membranes. J Membr Sci 150(1):1–8

    Article  CAS  Google Scholar 

  87. Gaborski TR, Snyder JL, Striemer CC, Fang DZ, Hoffman M, Fauchet PM, McGrath JL (2010) High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano 4(11):6973–6981

    Article  CAS  Google Scholar 

  88. Martin CR, Siwy Z (2004) Molecular filters: pores within pores. Nat Mater 3(5):284–285

    Article  CAS  Google Scholar 

  89. Bayley H, Martin CR (2000) Resistive-pulse sensing from microbes to molecules. Chem Rev 100(7):2575–2594

    Article  CAS  Google Scholar 

  90. Kobayashi Y, Martin CR (1999) Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes. Anal Chem 71(17):3665–3672

    Article  CAS  Google Scholar 

  91. Gyurcsányi RE (2008) Chemically-modified nanopores for sensing. TrAC Trends Anal Chem 27(7):627–639

    Article  Google Scholar 

  92. Reimhult E, Höök F (2015) Design of surface modifications for nanoscale sensor applications. Sensors 15(1):1635–1675

    Article  Google Scholar 

  93. Wang X, Smirnov S (2009) Label-free DNA sensor based on surface charge modulated ionic conductance. ACS Nano 3(4):1004–1010

    Article  CAS  Google Scholar 

  94. Li S-J, Li J, Wang K, Wang C, Xu J-J, Chen H-Y, Xia X-H, Huo Q (2010) A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. ACS Nano 4(11):6417–6424

    Article  CAS  Google Scholar 

  95. Dahlin AB (2015) Sensing applications based on plasmonic nanopores: the hole story. Analyst

    Google Scholar 

  96. Junesch J, Sannomiya T (2014) Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer. ACS Appl Mater Inter

    Google Scholar 

  97. Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82(24):10015–10020

    Article  CAS  Google Scholar 

  98. Zhao Y, Gaur G, Retterer ST, Laibinis PE, Weiss SM (2016) Flow-through porous silicon membranes for real-time label-free biosensing. Anal Chem 88(22):10940–10948

    Article  CAS  Google Scholar 

  99. Xiong K, Emilsson G, Dahlin AB (2016) Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. Analyst

    Google Scholar 

  100. Yamaguchi A, Uejo F, Yoda T, Uchida T, Tanamura Y, Yamashita T, Teramae N (2004) Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nat Mater 3(5):337–341

    Article  CAS  Google Scholar 

  101. Breault-Turcot J, Masson J-F (2015) Microdialysis SPR: diffusion-gated sensing in blood. Chem Sci

    Google Scholar 

  102. Jágerszki G, Gyurcsányi RE, Höfler L, Pretsch E (2007) Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. a new approach to quantitative label-free dna analysis. Nano Lett 7(6):1609–1612

    Article  Google Scholar 

  103. Tsang M-K, Ye W, Wang G, Li J, Yang M, Hao J (2016) Ultrasensitive detection of ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 10(1):598–605

    Article  CAS  Google Scholar 

  104. Li F, Guijt RM, Breadmore MC (2016) Nanoporous membranes for microfluidic concentration prior to electrophoretic separation of proteins in urine. Anal Chem 88(16):8257–8263

    Article  CAS  Google Scholar 

  105. Hereijgers J, Desmet G, Breugelmans T, De Malsche W (2015) Strategies to integrate porous layers in microfluidic devices. Microelectron Eng 132:1–13

    Article  CAS  Google Scholar 

  106. Escobedo C (2013) On-chip nanohole array based sensing: a review. Lab Chip 13(13):2445–2463

    Article  CAS  Google Scholar 

  107. Chen X, Shen J (2016) Review of membranes in microfluidics. J Chem Technol Biotechnol n/a–n/a

    Google Scholar 

  108. Barik A, Otto LM, Yoo D, Jose J, Johnson TW, Oh S-H (2014) Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett 14(4):2006–2012

    Article  CAS  Google Scholar 

  109. Snyder JL, Getpreecharsawas J, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, Borkholder DA, McGrath JL (2013) High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes. Proc Natl Acad Sci 110(46):18425–18430

    Article  CAS  Google Scholar 

  110. Wu X, Ramiah Rajasekaran P, Martin CR (2016) An alternating current electroosmotic pump based on conical nanopore membranes. ACS Nano 10(4):4637–4643

    Article  CAS  Google Scholar 

  111. Tagliazucchi M, Szleifer I (2015) Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater Today 18(3):131–142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas B. Dahlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emilsson, G., Dahlin, A.B. (2018). Nanopore Membranes for Separation and Sensing. In: Oh, SH., Escobedo, C., Brolo, A. (eds) Miniature Fluidic Devices for Rapid Biological Detection. Integrated Analytical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-64747-0_1

Download citation

Publish with us

Policies and ethics