Skip to main content

Topological Spin Models in Rydberg Lattices

  • Chapter
  • First Online:
Exploring the World with the Laser

Abstract

We show that resonant dipole–dipole interactions between Rydberg atoms in a triangular lattice can give rise to artificial magnetic fields for spin excitations. We consider the coherent dipole–dipole coupling between np and ns Rydberg states and derive an effective spin-1/2 Hamiltonian for the np excitations. By breaking time-reversal symmetry via external fields, we engineer complex hopping amplitudes for transitions between two rectangular sub-lattices. The phase of these hopping amplitudes depends on the direction of the hop. This gives rise to a staggered, artificial magnetic field which induces non-trivial topological effects. We calculate the single-particle band structure and investigate its Chern numbers as a function of the lattice parameters and the detuning between the two sub-lattices. We identify extended parameter regimes where the Chern number of the lowest band is \( C=1 \) or \( C=2 \).

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  2. I. Bloch, Nature 1, 23 (2005)

    Google Scholar 

  3. T. Calarco, H.J. Briegel, D. Jaksch, J.I. Cirac, P. Zoller, J. Mod. Opt. 47, 2137 (2000)

    Article  ADS  Google Scholar 

  4. J.I. Cirac, P. Zoller, Nat. Phys. 8, 264 (2012)

    Article  Google Scholar 

  5. T.H. Johnson, S.R. Clark, D. Jaksch, EPJ Quantum Technol. 1, 10 (2014)

    Article  Google Scholar 

  6. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  7. W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, Nature 462, 74 (2009)

    Article  ADS  Google Scholar 

  8. W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Science 329, 547 (2010)

    Article  ADS  Google Scholar 

  9. J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  10. C. Weitenberg, M. Endres, J.F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, S. Kuhr, Nature 471, 319 (2011)

    Article  ADS  Google Scholar 

  11. T. Gericke, P. Würtz, D. Reitz, T. Langen, H. Ott, Nat. Phys. 4, 949 (2008)

    Article  Google Scholar 

  12. P. Würtz, T. Langen, T. Gericke, A. Koglbauer, H. Ott, Phys. Rev. Lett. 103, 080404 (2009)

    Article  Google Scholar 

  13. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994)

    Book  Google Scholar 

  14. J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Nature 472, 307 (2011)

    Article  ADS  Google Scholar 

  15. C. Sanner, E.J. Su, W. Huang, A. Keshet, J. Gillen, W. Ketterle, Phys. Rev. Lett. 108, 240404 (2012)

    Article  ADS  Google Scholar 

  16. J. Ruseckas, G. Juzeliūnas, P. Öhberg, M. Fleischhauer, Phys. Rev. Lett. 95, 010404 (2005)

    Article  ADS  Google Scholar 

  17. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011)

    Article  ADS  Google Scholar 

  18. R. Dum, M. Olshanii, Phys. Rev. Lett. 76, 1788 (1996)

    Article  ADS  Google Scholar 

  19. Y.-J. Lin, R.L. Compton, A.R. Perry, W.D. Phillips, J.V. Porto, I.B. Spielman, Phys. Rev. Lett. 102, 130401 (2009a)

    Article  ADS  Google Scholar 

  20. Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto, I.B. Spielman, Nature 462, 628 (2009b)

    Article  ADS  Google Scholar 

  21. Y.-J. Lin, R.L. Comption, K. Jiménez-García, W.D. Phillips, J.V. Porto, I.B. Spielman, Nat. Phys. 7, 531 (2011)

    Article  Google Scholar 

  22. M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, I. Bloch, Phys. Rev. Lett. 107, 255301 (2011)

    Article  ADS  Google Scholar 

  23. D. Jaksch, P. Zoller, New J. Phys. 5, 56 (2003)

    Article  ADS  Google Scholar 

  24. J. Struck, C. Ölschläger, R.L. Targat, P. Soltan-Panahi, A. Eckardt, M. Lewenstein, P. Windpassinger, K. Sengstock, Science 333, 996 (2011)

    Article  ADS  Google Scholar 

  25. J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, P. Windpassinger, Phys. Rev. Lett. 108, 225304 (2012)

    Article  ADS  Google Scholar 

  26. K. Jiménez-García, L.J. LeBlanc, R.A. Williams, M.C. Beeler, A.R. Perry, I.B. Spielman, Phys. Rev. Lett. 108, 225303 (2012)

    Article  ADS  Google Scholar 

  27. R.N. Palmer, D. Jaksch, Phys. Rev. Lett. 96, 180407 (2006)

    Article  ADS  Google Scholar 

  28. R.N. Palmer, A. Klein, D. Jaksch, Phys. Rev. A 78, 013609 (2008)

    Article  ADS  Google Scholar 

  29. N.R. Cooper, J. Dalibard, Phys. Rev. Lett. 110, 185301 (2013)

    Article  ADS  Google Scholar 

  30. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237 (2014)

    Article  ADS  Google Scholar 

  31. P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein et al., Phys. Rev. Lett. 109, 145301 (2012)

    Article  ADS  Google Scholar 

  32. H. Zhang, Q. Guo, Z. Ma, X. Chen, Phys. Rev. A 87, 043625 (2013)

    Article  ADS  Google Scholar 

  33. A. Sterdyniak, N.R. Cooper, N. Regnault, Phys. Rev. Lett. 115, 116802 (2015)

    Article  ADS  Google Scholar 

  34. A.W. Glaetzle, M. Dalmonte, R. Nath, I. Rousochatzakis, R. Moessner, P. Zoller, Phys. Rev. X 4, 041037 (2014)

    Google Scholar 

  35. A.W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, P. Zoller, Phys. Rev. Lett. 114, 173002 (2015)

    Article  ADS  Google Scholar 

  36. D. Peter, S. Müller, S. Wessel, H.P. Büchler, Phys. Rev. Lett. 109, 025303 (2012)

    Article  ADS  Google Scholar 

  37. A.V. Gorshkov, S.R. Manmana, G. Chen, J. Ye, E. Demler, M.D. Lukin, A.M. Rey, Phys. Rev. Lett. 107, 115301 (2011a)

    Article  ADS  Google Scholar 

  38. A.V. Gorshkov, S.R. Manmana, G. Chen, E. Demler, M.D. Lukin, A.M. Rey, Phys. Rev. A 84, 033619 (2011b)

    Article  ADS  Google Scholar 

  39. N.Y. Yao, C.R. Laumann, A.V. Gorshkov, S.D. Bennett, E. Demler, P. Zoller, M.D. Lukin, Phys. Rev. Lett. 109, 266804 (2012)

    Article  ADS  Google Scholar 

  40. D. Peter, N.Y. Yao, N. Lang, S.D. Huber, M.D. Lukin, H.P. Büchler, Phys. Rev. A 91, 053617 (2015)

    Article  ADS  Google Scholar 

  41. N.Y. Yao, A.V. Gorshkov, C.R. Laumann, A.M. Läuchli, J. Ye, M.D. Lukin, Phys. Rev. Lett. 110, 185302 (2013)

    Article  ADS  Google Scholar 

  42. D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, C. Adams, Phys. Rev. Lett. 114, 113002 (2015)

    Article  ADS  Google Scholar 

  43. T.F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  44. F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, A. Browaeys, Phys. Rev. X 4, 021034 (2014)

    Google Scholar 

  45. H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, A. Browaeys, Nature 534, 667 (2016)

    Article  ADS  Google Scholar 

  46. D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A. Browaeys, arXiv:1607.03042

  47. F. Robicheaux, N.M. Gill, Phys. Rev. A 89, 053429 (2014)

    Article  ADS  Google Scholar 

  48. S. Bettelli, D. Maxwell, T. Fernholz, C.S. Adams, I. Lesanovsky, C. Ates, Phys. Rev. A 88, 043436 (2013)

    Article  ADS  Google Scholar 

  49. H. Schempp, G. Güner, S. Wüster, M. Weidemüller, S. Whitlock, Phys. Rev. Lett. 115, 093002 (2015)

    Article  ADS  Google Scholar 

  50. B. Zygelman, Phys. Rev. A 86, 042704 (2012)

    Article  ADS  Google Scholar 

  51. M. Kiffner, W. Li, D. Jaksch, Phys. Rev. Lett. 110, 170402 (2013a)

    Article  ADS  Google Scholar 

  52. M. Kiffner, W. Li, D. Jaksch, J. Phys. B 46, 134008 (2013b)

    Article  ADS  Google Scholar 

  53. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (J. Wiley & Sons, New York, 1998)

    Book  Google Scholar 

  54. P.D. Ye, D. Weiss, R.R. Gerhardts, M. Seeger, K. von Klitzing, K. Eberl, H. Nickel, Phys. Rev. Lett. 95, 3013 (1995)

    Article  ADS  Google Scholar 

  55. A. Nogaret, J. Phys. Condens. Matter 22, 253201 (2010)

    Article  ADS  Google Scholar 

  56. D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  57. T. Fukui, Y. Hatsugai, H. Suzuki, J. Phys. Soc. Jpn. 74, 1674 (2005)

    Article  ADS  Google Scholar 

  58. K. Singer, J. Stanojevic, M. Weidemüller, R. Cote, J. Phys. B At. Mol. Opt. Phys. 38, S295 (2005). ISSN issn0953-4075. http://iopscience.iop.org/0953-4075/38/2/021

  59. T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, M. Weidemüller, Phys. Rev. Lett. 98, 023004 (2007)

    Article  ADS  Google Scholar 

  60. M. Kiffner, D. Ceresoli, D. Jaksch, J. Phys. B 49, 204004 (2016)

    Article  ADS  Google Scholar 

  61. Y. Hatsugai, Phys. Rev. B 48, 11851 (1993)

    Article  ADS  Google Scholar 

  62. X. Qi, Y. Wu, S. Zhang, Phys. Rev. B 74, 45125 (2006)

    Article  ADS  Google Scholar 

  63. H.M. Price, N.R. Cooper, Phys. Rev. A 85, 033620 (2012)

    Article  ADS  Google Scholar 

  64. T.G. Walker, M. Saffman, Phys. Rev. A 77, 032723 (2008)

    Article  ADS  Google Scholar 

  65. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1960)

    MATH  Google Scholar 

  66. I.I. Beterov, I.I. Ryabtsev, D.B. Tretyakov, V.M. Entin, Phys. Rev. A 79, 052504 (2009)

    Article  ADS  Google Scholar 

  67. D.A. Steck, Rubidium 87 D Line Data. http://steck.us/alkalidata (revision 2.1.4, 23 December 2010)

  68. W. Li, I. Mourachko, M.W. Noel, T.F. Gallagher, Phys. Rev. A 67, 052502 (2003)

    Article  ADS  Google Scholar 

  69. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976)

    MATH  Google Scholar 

  70. Wolfram Research, Inc., Mathematica Version 10.1 (Wolfram Research, Inc., Irvine, 2015)

    Google Scholar 

Download references

Acknowledgements

M.K. thanks the National Research Foundation and the Ministry of Education of Singapore for support and Tilman Esslinger for helpful discussions. The authors would like to acknowledge the use of the University of Oxford Advanced Research Computing (ARC) facility in carrying out this work (http://dx.doi.org/10.5281/zenodo.22558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kiffner .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Dipole Matrix Elements

We evaluate the matrix elements of the electric-dipole-moment operator \( \widehat{\boldsymbol{d}} \) of an individual atom via the Wigner–Eckert theorem [64, 65] and find

$$ \left\langle n{l}_{j^{\prime}}^{\prime }{m}^{\prime }|\widehat{\boldsymbol{d}}|n{l}_jm\right\rangle \kern0.5em =\mathcal{D}\sum \limits_{q=-1}^1{C}_{jm1q}^{j^{\prime }{m}^{\prime }}{\boldsymbol{\epsilon}}_q, $$
(23)

where \( {C}_{jm1q}^{j^{\prime }{m}^{\prime }} \) are Clebsch–Gordan coefficients and the spherical unit vectors \( {\boldsymbol{\epsilon}}_q \) in Eq. (23) are defined as

$$ {\epsilon}_1=-\frac{{\mathbf{e}}_x-i{\mathbf{e}}_y}{\sqrt{2}},\kern1em {\epsilon}_0={\mathbf{e}}_z,\kern1em {\epsilon}_{-1}=\frac{{\mathbf{e}}_x+i{\mathbf{e}}_y}{\sqrt{2}}. $$
(24)

The reduced dipole matrix element is [64, 65]

$$ {\displaystyle \begin{array}{cc}\hfill \mathcal{D}=& {\left(-1\right)}^{\mathrm{j}+{\mathrm{l}}^{\prime }-1/2}\sqrt{2j+1}\sqrt{2l+1}\hfill \\ {}\hfill & \left\{\begin{array}{ccc}{l}^{\prime }& l& 1\\ {}j& {j}^{\prime }& 1/2\end{array}\right\}{C}_{10l0}^{l^{\prime }0}e\left\langle {n}^{\prime }{l}^{\prime }|r| nl\right\rangle, \hfill \end{array}} $$
(25)

where the \( 3\times 2 \) matrix in curly braces is the Wigner \( 6-j \) symbol, e is the elementary charge, and \( \left\langle {n}^{\prime }{l}^{\prime }|r| nl\right\rangle \) is a radial matrix element.

Appendix B: Rubidium Parameters

Here we calculate the strength of the dipole–dipole interaction for rubidium atoms and estimate the magnitude of the level shifts required for realizing our model. For \( n{s}_{1/2}\leftrightarrow n{p}_{3/2} \) transitions in rubidium with principal quantum number \( n=70 \), the reduced dipole moment \( \mathcal{D} \) in Eq. (25) is given by

$$ \mathcal{D}\approx 2909e{a}_0, $$
(26)

where e is the elementary charge and \( {a}_0 \) is the Bohr radius. It follows that the strength of the dipole–dipole coupling \( {V}_0 \) in Eq. (7) for \( a=20\kern0.166667em \upmu \mathrm{m} \) is

$$ {V}_0/\hbar \approx 2\pi \times 1.03\kern0.166667em \mathrm{MHz}. $$
(27)

The lifetime of the \( n{s}_{1/2} \) and \( n{p}_{3/2} \) states at temperature \( T=300\mathrm{K} \) and for \( n=70 \) is \( {T}_{\mathrm{s}}\approx 151.6\kern0.166667em \upmu \mathrm{s} \) and \( {T}_{\mathrm{p}}\approx 191.3\kern0.166667em \upmu \mathrm{s} \), respectively [66]. Note that these values take into account the lifetime reduction due to blackbody radiation. The hopping rates vary with the lattice parameters but are typically of the order of \( {V}_0 \). It follows that in principle many coherent hopping events can be observed before losses due to spontaneous emission set in. This finding is consistent with the experimental observations in Ref. [42]. Note that the magnitude of \( {V}_0 \) can be increased by reducing the size of the lattice constant a or by increasing n.

Next we discuss the requirements for reducing the general Hamiltonian in Eq. (2) to our model in Eq. (14). First, we note that the level shifts induced between Zeeman sub-states must be large compared to \( {V}_0 \) and hence of the order of \( 10\kern0.166667em \mathrm{MHz} \). Shifts of this magnitude can be realized with weak magnetic fields [67] or AC stark shifts [42]. Furthermore, the fine structure splitting between the \( n{s}_{1/2} \) and \( n{p}_{3/2} \) manifolds is \( \Delta {E}_{\mathrm{FS}}\approx 2\pi \times 10.8\kern0.166667em \mathrm{GHz} \) [68], which is much larger than \( {V}_0 \), and hence, it is justified to neglect off-resonant terms in Eq. (3). Finally, we note that the energy difference between the \( n{p}_{3/2} \) manifold and the nearby \( n{p}_{1/2} \) manifold is approximately \( 285\kern0.166667em \mathrm{MHz} \) [68], which is also much larger than \( {V}_0 \). It follows that the \( n{p}_{1/2} \) states can be safely neglected.

Appendix C: k-space Hamiltonian

The k-space Hamiltonian can be obtained by considering the single-excitation sub-space \( {\mathcal{E}}_1 \) spanned by the basis states

$$ \mid \alpha \left\rangle ={S}_{\alpha}^{+}\mid 0\right\rangle, $$
(28)

where \( \mid \alpha \Big\rangle \) denotes one p excitation at site \( \alpha \) and \( \mid 0\Big\rangle \) is the “vacuum” state with zero excitations, i.e. the atoms at all lattice sites are in state \( \mid {s}_{1/2}1/2\Big\rangle \). In order to solve the eigenvalue equation

$$ {H}_{\mathrm{eff}}\mid \psi \left\rangle =E\mid \psi \right\rangle $$
(29)

with \( \mid \psi \Big\rangle \in {\mathcal{E}}_1 \), we describe the lattice in Fig. 1 by a rectangular Bravais lattice with a two-atomic basis. More specifically, the direct lattice points are given by the \( \mathcal{R} \) atoms such that the basis is comprised of one \( \mathcal{R} \) atom at \( \mathbf{0} \) and one \( \mathcal{B} \) atom at \( \left(\mathbf{a}+\mathbf{b}\right)/2 \). According to Bloch’s theorem [69], we can solve Eq. (29) with the Ansatz

$$ \mid \psi \left\rangle =\sum \limits_{\alpha }{u}_{\alpha}\mid \alpha \right\rangle, $$
(30)

where the coefficients \( {u}_{\alpha } \) can be written as

$$ {u}_{\alpha }=\left\{\begin{array}{cc}{\psi}_{\mathcal{R}}{e}^{\mathrm{i}\mathbf{k}\cdotp \mathbf{U}\left(\alpha \right)},\hfill & \alpha \in \mathcal{R},\hfill \\ {}{\psi}_{\mathcal{B}}{e}^{\mathrm{i}\mathbf{k}\cdotp \mathbf{U}\left(\alpha \right)},\hfill & \alpha \in \mathcal{B},\hfill \end{array}\right. $$
(31)

and \( \mathbf{k} \) is a point in the first Brillouin zone of the direct lattice. The vector \( \mathbf{U}\left(\alpha \right) \) in Eq. (31) is the Bravais lattice point associated with site \( \alpha \),

$$ \mathbf{U}\left(\alpha \right)=\left\{\begin{array}{cc}{\mathbf{R}}_{\alpha },\hfill & \alpha \in \mathcal{R},\hfill \\ {}{\mathbf{R}}_{\alpha }-\left(\mathbf{a}+\mathbf{b}\right)/2,\hfill & \alpha \in \mathcal{B}.\hfill \end{array}\right. $$
(32)

With Eqs. (30) and (31), Eq. (29) can be reduced to the following matrix equation for the amplitudes \( {\psi}_{\mathcal{R}} \) and \( {\psi}_{\mathcal{B}} \),

$$ \mathcal{H}\left(\mathbf{k}\right)\left(\begin{array}{c}{\psi}_{\mathcal{R}}\hfill \\ {}{\psi}_{\mathcal{B}}\hfill \end{array}\right)=E\left(\begin{array}{c}{\psi}_{\mathcal{R}}\hfill \\ {}{\psi}_{\mathcal{B}}\hfill \end{array}\right), $$
(33)

where the \( 2\times 2 \) matrix \( \mathcal{H}\left(\mathbf{k}\right) \) is the k-space Hamiltonian. We find \( \mathcal{H}\left(\mathbf{k}\right) \) using the software package MATHEMATICA [70] for each set of lattice parameters a and b. In general, the resulting expressions are too complicated to display here. In the special case of nearest-neighbour interactions only, we find

$$ {\left[\mathcal{H}\left(\mathbf{k}\right)\right]}_{11}=-{V}_0\cos \left(\mathbf{k}\cdotp \mathbf{a}\right)+\hbar \Delta, $$
(34a)
$$ {\displaystyle \begin{array}{c}{\left[\mathcal{H}\left(\mathbf{k}\right)\right]}_{12}=\frac{V_0\sqrt{48}}{{\left[1+{\left(b/a\right)}^2\right]}^{3/2}}\left({e}^{-\mathrm{i}\left(\mathbf{k}\cdotp \mathbf{a}+\mathbf{k}\cdotp \mathbf{b}\right)}{e}^{-2\mathrm{i}\alpha }+{e}^{-2\mathrm{i}\alpha}\right.\hfill \\ {}\hfill \left.+{e}^{-\mathrm{i}\mathbf{k}\cdotp \mathbf{a}}{e}^{2\mathrm{i}\alpha }+{e}^{-\mathrm{i}\mathbf{k}\cdotp \mathbf{b}}{e}^{2\mathrm{i}\alpha}\right),\hfill \end{array}} $$
(34b)
$$ {\left[\mathcal{H}\left(\mathbf{k}\right)\right]}_{22}=-\frac{1}{3}{V}_0\cos \left(\mathbf{k}\cdotp \mathbf{a}\right), $$
(34c)

where \( \cos \left(\alpha \right)=1/{\left[1+{\left(b/a\right)}^2\right]}^{1/2} \) and \( {\left[\mathcal{H}\left(\mathbf{k}\right)\right]}_{21}={\left[\mathcal{H}\left(\mathbf{k}\right)\right]}_{12}^{\ast } \).

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiffner, M., O’Brien, E., Jaksch, D. (2018). Topological Spin Models in Rydberg Lattices. In: Meschede, D., Udem, T., Esslinger, T. (eds) Exploring the World with the Laser. Springer, Cham. https://doi.org/10.1007/978-3-319-64346-5_20

Download citation

Publish with us

Policies and ethics