Skip to main content

A Supervised Breast Lesion Images Classification from Tomosynthesis Technique

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Abstract

In this paper, we propose a deep learning approach for breast lesions classification, by processing breast images obtained using an innovative acquisition system, the Tomosynthesis, a medical instrument able to acquire high-resolution images using a lower radiographic dose than normal Computed Tomography (CT). The acquired images were processed to obtain Regions Of Interest (ROIs) containing lesions of different categories. Subsequently, several pre-trained Convolutional Neural Network (CNN) models were evaluated as feature extractors and coupled with non-neural classifiers for discriminate among the different categories of lesions. Results showed that the use of CNNs as feature extractor and the subsequent classification using a non-neural classifier reaches high values of Accuracy, Sensitivity and Specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vestito, A., Mangieri, F.F., Gatta, G., Moschetta, M., Turi, B., Ancona, A.: Breast carcinoma in elderly women. Our experience. Il giornale di chirurgia 32, 411–416 (2011)

    Google Scholar 

  2. Korhonen, K.E., Weinstein, S.P., McDonald, E.S., Conant, E.F.: Strategies to increase cancer detection: review of true-positive and false-negative results at digital breast tomosynthesis screening. RadioGraphics 36, 1954–1965 (2016)

    Article  Google Scholar 

  3. Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., Moschetta, M.: An optimized feed-forward artificial neural network topology to support radiologists in breast lesions classification. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1385–1392. ACM (2016)

    Google Scholar 

  4. Bevilacqua, V., Pietroleonardo, N., Triggiani, V., Brunetti, A., Di Palma, A.M., Rossini, M., Gesualdo, L.: An innovative neural network framework to classify blood vessels and tubules based on Haralick features evaluated in histological images of kidney biopsy. Neurocomputing 228, 143–153 (2017)

    Article  Google Scholar 

  5. Cha, K.H., Hadjiiski, L., Samala, R.K., Chan, H.P., Caoili, E.M., Cohan, R.H.: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med. Phys. 43, 1882–1896 (2016)

    Article  Google Scholar 

  6. Niklason, L.T., Christian, B.T., Niklason, L.E., Kopans, D.B., Castleberry, D.E., Opsahl-Ong, B., Landberg, C.E., Slanetz, P.J., Giardino, A.A., Moore, R.: Digital tomosynthesis in breast imaging. Radiology 205, 399–406 (1997)

    Article  Google Scholar 

  7. Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18, 1049–1075 (1999)

    Article  Google Scholar 

  8. Lim, J.S.: Two-Dimensional Signal and Image Processing, 710 p. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  9. Kom, G., Tiedeu, A., Kom, M.: Automated detection of masses in mammograms by local adaptive thresholding. Comput. Biol. Med. 37, 37–48 (2007)

    Article  Google Scholar 

  10. Carnimeo, L., Bevilacqua, V., Cariello, L., Mastronardi, G.: Retinal vessel extraction by a combined neural network–wavelet enhancement method. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 1106–1116. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04020-7_118

    Chapter  Google Scholar 

  11. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  12. Bevilacqua, V., Mastronardi, G., Piazzolla, A.: An evolutionary method for model-based automatic segmentation of lower abdomen CT images for radiotherapy planning. Appl. Evol. Comput. 6024, 320–327 (2010)

    Google Scholar 

  13. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, pp. 958–962. Citeseer (2003)

    Google Scholar 

  14. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9. IEEE (2015)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105. NIPS (2012)

    Google Scholar 

  17. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets, pp. 1–11 (2014). arXiv preprint arXiv:1405.3531

  18. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  19. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999). doi:10.1007/3-540-49257-7_15

    Chapter  Google Scholar 

  20. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29, 103–130 (1997)

    Article  MATH  Google Scholar 

  21. Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World scientific, River Edge (2014)

    Book  MATH  Google Scholar 

  22. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitoantonio Bevilacqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bevilacqua, V. et al. (2017). A Supervised Breast Lesion Images Classification from Tomosynthesis Technique. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63312-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63311-4

  • Online ISBN: 978-3-319-63312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics