Skip to main content

The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders

  • Chapter
  • First Online:
Obesity and Brain Function

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 19))

Abstract

The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer’s disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JD Jr (2008) Alzheimer’s disease, ceramide, visfatin and NAD. CNS Neurol Disord Drug Targets 7(6):492–498

    Article  CAS  PubMed  Google Scholar 

  • Al-Suhaimi EA, Shehzad A (2013) Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity. Eur J Med Res 18:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai Y, Takayama M, Abe Y, Hirose N (2011) Adipokines and aging. J Atheroscler Thromb 18(7):545–550

    Google Scholar 

  • Aziz NA, Pijl H, Frölich M, Roelfsema F, Roos RA (2011) Leptin, adiponectin, and resistin secretion and diurnal rhythmicity are unaltered in Parkinson’s disease. Mov Disord 26(4):760–761

    Article  PubMed  Google Scholar 

  • Barrigas C, Fragoso I (2012) Obesity, academic performance and reasoning ability in Portuguese students between 6 and 12 years old. J Biosoc Sci 44:165–179

    Article  PubMed  Google Scholar 

  • Bigalke B, Schreitmüller B, Sopova K, Paul A, Stransky E, Gawaz M, Stellos K, Laske C (2011) Adipocytokines and CD34 progenitor cells in Alzheimer’s disease. PLoS One 6(5):e20286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonda DJ, Stone JG, Torres SL, Siedlak SL, Perry G, Kryscio R, Jicha G, Casadesus G, Smith MA, Zhu X, Lee HG (2014) Dysregulation of leptin signaling in Alzheimer disease: evidence for neuronal leptin resistance. J Neurochem 128(1):162–172

    Article  CAS  PubMed  Google Scholar 

  • Bruce AS, Black WR, Bruce JM, Daldalian M, Martin LE, Davis AM (2011) Ability to delay gratification and BMI in preadolescence. Obesity (Silver Spring) 19:1101–1102

    Article  Google Scholar 

  • Chan KH, Lam KS, Cheng OY, Kwan JS, Ho PW, Cheng KK, Chung SK, Ho JW, Guo VY, Xu A (2012) Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity. PLoS One 7(12):e52354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cserjesi R, Molnar D, Luminet O, Lenard L (2007) Is there any relationship between obesity and mental flexibility in children? Appetite 49:675–678

    Article  PubMed  Google Scholar 

  • Delgado-Rico E, Rio-Valle JS, Gonzalez-Jimenez E, Campoy C, Verdejo-Garcia A (2012) BMI predicts emotion-driven impulsivity and cognitive inflexibility in adolescents with excess weight. Obesity (Silver Spring) 20:1604–1610

    Article  Google Scholar 

  • Demirci S, Aynalı A, Demirci K, Demirci S, Arıdoğan BC (2017) The serum levels of resistin and its relationship with other proinflammatory cytokines in patients with Alzheimer’s disease. Clin Psychopharmacol Neurosci 15(1):59–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Denzel MS, Scimia MC, Zumstein PM, Walsh K, Ruiz-Lozano P, Ranscht B (2010) T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest 120:4342–4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durakoglugil M, Irving AJ, Harvey J (2005) Leptin induces a novel form of NMDA receptor-dependent long- term depression. J Neurochem 95(2):396–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edlow AG, Vora NL, Hui L, Wick HC, Cowan JM, Bianchi DW (2014) Maternal obesity affects fetal neurodevelopmental and metabolic gene expression: a pilot study. PLoS One 9(2):e88661

    Article  PubMed  PubMed Central  Google Scholar 

  • Edlow AG (2017) Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat Diagn 37(1):95–110

    Google Scholar 

  • Erol A (2008) An integrated and unifying hypotesis for the metabolic basis of sporadic Alzheimer’s disease. JAD 13(3):241–253

    Article  CAS  PubMed  Google Scholar 

  • Fewlass DC, Noboa K, Pi-Sunyer FX, Johnston JM, Yan SD, Tezapsidis N (2004) Obesity-related leptin regulates Alzheimer’s Abeta. FASEB J 18(15):1870–1878

    Article  CAS  PubMed  Google Scholar 

  • Greco SJ, Sarkar S, Casadesus G, Zhu X, Smith MA, Ashford JW, Johnston JM, Tezapsidis N (2009) Leptin inhibits glycogen synthase kinase-3beta to prevent tau phosphorylation in neuronal cells. Neurosci Lett 455(3):191–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden KF, Lindquist K, Tylavsky FA, Rosano C, Harris TB, Yaffe K (2009) Serum leptin level and cognition in the elderly: findings from the health ABC study. Neurobiol Aging 30(9):1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Holland WL, Miller RA, Wang ZV et al (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 17(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, Shaw LM, Pickering E, Kuhn M, Chen Y, McCluskey L, Elman L, Karlawish J, Hurtig HI, Siderowf A, Lee VM, Soares H, Trojanowski JQ (2010) Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment. Acta Neuropathol 119(6):669–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Yu X, Keim S, Li L, Zhang L, Zhang J (2014) Maternal prepregnancy obesity and child neurodevelopment in the collaborative perinatal project. Int J Epidemiol 43(3):783–792

    Article  PubMed  Google Scholar 

  • Jeon BT, Shin HJ, Kim JB et al (2009) Adiponectin protects hippocampal neurons against kainic acid-induced excitotoxicity. Brain Res Rev 61(2):81–88

    Article  CAS  PubMed  Google Scholar 

  • Kamogawa K, Kohara K, Tabara Y, Uetani E, Nagai T, Yamamoto M, Igase M, Miki T (2010) Abdominal fat, adipose-derived hormones and mild cognitive impairment: the J-SHIPP study. Dement Geriatr Cogn Disord 30(5):432–439

    Article  CAS  PubMed  Google Scholar 

  • Kizilarslanoğlu MC, Kara Ö, Yeşil Y, Kuyumcu ME, Öztürk ZA, Cankurtaran M, Rahatli S, Pakaştiçali N, Çinar E, Halil MG, Sener B, Cankurtaran ES, Arioğul S (2015) Alzheimer disease, inflammation, and novel inflammatory marker: resistin. Turk J Med Sci 45(5):1040–1046

    Article  PubMed  Google Scholar 

  • Leung YY, Toledo JB, Nefedov A, Polikar R, Raghavan N, Xie SX, Farnum M, Schultz T, Baek Y, Deerlin VV, WT H, Holtzman DM, Fagan AM, Perrin RJ, Grossman M, Soares HD, Kling MA, Mailman M, Arnold SE, Narayan VA, Lee VM, Shaw LM, Baker D, Wittenberg GM, Trojanowski JQ, Wang LS (2015) Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer’s disease in a multicohort study. Alzheimers Dement (Amst) 1(3):339–348

    Google Scholar 

  • Liang J, Matheson BE, Kaye WH, Boutelle KN (2014) Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int J Obes (Lond) 38(4):494–506

    Google Scholar 

  • Lieb W, Beiser AS, Vasan RS et al (2009) Association of plasma leptin levels with incident Alzheimer’s disease and MRI measures of brain aging: the Framingham study. JAMA 302(23):2565–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LY, Wang F, Zhang XY, Huang P, YB L, Wei EQ, Zhang WP (2012) Nicotinamide phosphoribosyltransferase may be involved in age-related brain diseases. PLoS One 7(10):e44933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chi N, Chen H, Zhang J, Bian Y, Cui G, Xiu C (2013) Resistin protection against endogenous Aβ neuronal cytotoxicity from mi- tochondrial pathway. Brain Res 1523:77–84

    Article  CAS  PubMed  Google Scholar 

  • Lokken KL, Boeka AG, Austin HM, Gunstad J, Harmon CM (2009) Evidence of executive dysfunction in extremely obese adolescents: a pilot study. Surg Obes Relat Dis 5:547–552

    Article  PubMed  Google Scholar 

  • London RA, Castrechini S (2011) A longitudinal examination of the link between youth physical fitness and academic achievement. J Sch Health 81:400–408

    Article  PubMed  Google Scholar 

  • Lorefält B, Toss G, Granérus AK (2009) Weight loss, body fat mass, and leptin in Parkinson’s disease. Mov Disord 24(6):885–890

    Article  PubMed  Google Scholar 

  • Ma J, Zhang W, Wang H et al (2016) Peripheral blood adipokines and insulin levels in patients with Alzheimer’s disease: a replication study and meta-analysis. Curr Alzheimer Res 13:1–11

    Google Scholar 

  • Maioli S, Lodeiro M, Merino-Serrais P, Falahati F, Khan W, Puerta E, Codita A, Rimondini R, Ramirez MJ, Simmons A, Gil-Bea F, Westman E, Initiative C-MA A’s DN (2015) Alterations in brain leptin signalling in spite of unchanged CSF leptin levels in Alzheimer’s disease. Aging Cell 14(1):122–129

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Mattson MP, Maudsley S (2006) Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 5(3):332–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nederkoorn C, Coelho JS, Guerrieri R, Houben K, Jansen A (2012) Specificity of the failure to inhibit responses in overweight children. Appetite 59:409–413

    Article  PubMed  Google Scholar 

  • Ng RC, Cheng OY, Kwan JSC et al (2016) Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 11:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngo ST, Steyn FJ, Huang L, Mantovani S, Pfluger CM, Woodruff TM, O’Sullivan JD, Henderson RD, McCombe PA (2015) Altered expression of metabolic proteins and adipokines in patients with amyotrophic lateral sclerosis. J Neurol Sci 357(1–2):22–27

    Article  CAS  PubMed  Google Scholar 

  • Novakova L, Haluzik M, Jech R, Urgosik D, Ruzicka F, Ruzicka E (2011) Hormonal regulators of food intake and weight gain in Parkinson’s disease after subthalamic nucleus stimulation. Neuro Endocrinol Lett 32(4):437–441

    CAS  PubMed  Google Scholar 

  • O’Reilly ÉJ, Wang H, Weisskopf MG, Fitzgerald KC, Falcone G, McCullough ML et al (2013) Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14:205–211

    Article  PubMed  Google Scholar 

  • Paganoni S, Deng J, Jaffa M, Cudkowicz ME, Wills A-M (2011) Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve 44:20–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Palacios N, Gao X, McCullough ML, Jacobs EJ, Patel AV, Mayo T, Schwarzschild MA, Ascherio A (2011) Obesity, diabetes, and risk of Parkinson’s disease. Mov Disord 26(12):2253–2259

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu G, Wan R, Hu J, Mattson MP, Spangler E, Liu S, Yau SY, Lee TM, Gleichmann M, Ingram DK, So KF, Zou S (2011) Adiponectin protects rat hippocampal neurons against excitotoxicity. Age (Dordr) 33(2):155–165

    Google Scholar 

  • Rajagopalan P, Toga AW, Jack CR, Weiner MW, Thompson PM (2013) Fat-mass-related hormone, plasma leptin, predicts brain volumes in the elderly. Neuroreport 24(2):58–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero O, Selten MM, Sich S et al (2015) Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl Psychiatry 5:e655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha NP, Scalzo PL, Barbosa IG, de Sousa MS, Morato IB, Vieira EL, Christo PP, Reis HJ, Teixeira AL (2014) Circulating levels of adipokines in Parkinson’s disease. J Neurol Sci 339(1–2):64–68

    Article  CAS  PubMed  Google Scholar 

  • Seeyave DM, Coleman S, Appugliese D, Corwyn RF, Bradley RH, Davidson NS et al (2009) Ability to delay gratification at age 4 years and risk of overweight at age 11 years. Arch Pediatr Adolesc Med 163:303–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanley LJ, Irving AJ, Harvey J (2001) Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci 21(24):RC186

    CAS  PubMed  Google Scholar 

  • Shimizu T, Nagaoka U, Nakayama Y, Kawata A, Kugimoto C, Kuroiwa Y, Kawai MT, Nishizawa M, Mihara B, Arahata H, Fujii N, Namba R, Ito H, Imai T, Nobukuni K, Kondo K, Ogino M, Nakajima T, Komori T (2012) Reduction rate of body mass index predicts prognosis for survival in amyotrophic lateral sclerosis: a multicenter study in Japan. Amyotroph Lateral Scler 13:363–366

    Article  PubMed  Google Scholar 

  • Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira AL, Diniz BS, Campos AC, Miranda AS, Rocha NP, Talib LL, Gattaz WF, Forlenza OV (2013) Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. NeuroMolecular Med 15(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Thundyil J, Pavlovski D, Sobey CG, Arumugam T V (2012) Adiponectin receptor signalling in the brain. Br J Pharmacol 165:313–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turer AT, Scherer PE (2012) Adiponectin: mechanistic insights and clinical implications. Diabetologia 55(9):2319–2326

    Article  CAS  PubMed  Google Scholar 

  • Une K, Takei YA, Tomita N, Asamura T, Ohrui T, Furukawa K, Arai H (2011) Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur J Neurol 18(7):1006–1009

    Article  CAS  PubMed  Google Scholar 

  • Van Cauwenberghe C, Vandendriessche C, Libert C, Vandenbroucke RE (2016) Caloric restriction: beneficial effects on brain aging and Alzheimer’s disease. Mamm Genome 27(7–8):300–319

    Article  PubMed  Google Scholar 

  • Verdejo-García A, Pérez-Expósito M, Schmidt-Río-Valle J, Fernández-Serrano MJ, Cruz F, Pérez-García M, López-Belmonte G, Martín-Matillas M, Martín-Lagos JA, Marcos A, Campoy C (2010) Selective alterations within executive functions in adolescents with excess weight. Obesity (Silver Spring) 18:1572–1578

    Article  Google Scholar 

  • Villela D, Schlesinger D, Suemoto CK, Grinberg LT, Rosenberg C (2014) A microdeletion in Alzheimer’s disease disrupts NAMPT gene. J Genet 93(2):535–537

    Article  PubMed  Google Scholar 

  • Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS (2001) Brain dopamine and obesity. Lancet 357(9253):354–357

    Article  CAS  PubMed  Google Scholar 

  • Waragai M, Adame A, Trinh I et al (2016) Possible involvement of adiponectin, the anti-diabetes molecule, in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 52:1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Warren MW, Hynan LS, Weiner MF (2012) Lipids and adipokines as risk factors for Alzheimer’s disease. J Alzheimers Dis 29(1):151–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wayner MJ, Armstrong DL, Phelix CF, Oomura Y (2004) Orexin-A (Hypocretin-1) and leptin enhance LTP in the dentate gyrus of rats in vivo. Peptides 25(6):991–996

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Li A, Hoo RLC et al (2014) Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci U S A 111:15810–15815

    Article  Google Scholar 

  • Zhang D, Wang X, Adiponectin Exerts LX (2016) Neurotrophic effects on dendritic dentate gyrus of male mice. Endocrinology 157:2853–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Letra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Letra, L., Santana, I. (2017). The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders. In: Letra, L., Seiça, R. (eds) Obesity and Brain Function. Advances in Neurobiology, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-63260-5_6

Download citation

Publish with us

Policies and ethics