Skip to main content
Book cover

Nanoenergy pp 301–328Cite as

New Ternary Intermetallics Based on Magnesium for Hydrogen Storage: The Fishing Approach

  • Chapter
  • First Online:

Abstract

Magnesium allows obtaining a good hydrogen storage capacity in terms of weight percentage but its use is limited by high stability of the hydride and slow kinetics. The kinetics can be improved by (i) mechanical grinding, cold rolling (or other severe plastic deformation) and (ii) addition of various elements (catalysts or activators).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wagemans RWP, Van Lenthe JH, De Jongh PE, Van Dillen AJ, De Jong KP (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127(47):16675–16680

    Article  Google Scholar 

  2. Vajo JJ (2011) Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr Opin Solid State Mater Sci 15:52–61

    Article  Google Scholar 

  3. Jeon K-J, Moon HR, Ruminski AM, Jiang B, Kisielowski C, Bardhan R, Jeffrey J (2011) Urban, air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater 10:286–290

    Article  Google Scholar 

  4. Barcelo S, Rogers M, Grigoropoulos CP, Mao SS (2010) Hydrogen storage property of sandwiched magnesium hydride nanoparticle thin film. Int J Hydrog Energy 5:7232–7235

    Article  Google Scholar 

  5. Zhang X, Yang R, Yang J, Zhao W, Zheng J, Tian W, Li X (2011) Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction. Int J Hydrog Energy 36:4967–4975

    Article  Google Scholar 

  6. Adelhelm P, de Jongh PE (2011) The impact of carbon materials on the hydrogen storage properties of light metal hydrides. J Mater Chem 21:2417–2427

    Article  Google Scholar 

  7. Fichtner M (2009) Properties of nanoscale metal hydrides. Nanotechnology 20:204–209

    Google Scholar 

  8. Wang CX, Yang GW (2005) Thermodynamics of metastable phase nucleation at the nanoscale. Mater Sci Eng R Rep 49:157–202

    Article  Google Scholar 

  9. Reardon H, Hanlon JM, Hughes RW, Godula-Jopek A, Mandal TK, Gregory DH (2012) Emerging concepts in solid-state hydrogen storage: the role of nano-materials design. Energy Environ Sci 5:5951–5979

    Article  Google Scholar 

  10. Blanco AAG, de Oliveira JCA, Lopez R, Moreno-Pirajan JC, Giraldo L, Zgrablich G, Sapag K (2010) A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf A Physicochem Eng Aspects 357:74–83

    Article  Google Scholar 

  11. Kim KC, Dai B, Johnson JK, Sholl DS (2009) Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Nanotechnology 20:204–211

    Google Scholar 

  12. Hwang YK, Hong D-Y, Chang J-S, Jhung SH, Seo Y-K, Kim J, Vimont A, Daturi M, Serre C, Férey G (2008) Amine grafting on coordinatively unsaturated metal centers of mofs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed 47:4144–4148

    Article  Google Scholar 

  13. Zlotea C, Latroche M (2012) Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids. Colloids Surf A Physicochem Eng Aspects 439(December 20):117–130

    Google Scholar 

  14. Fierro V, Szczurek A, Zlotea C, Mareche JF, Izquierdo MT, Albiniak A, Latroche M, Furdin G, Celzard A (2010) Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons. Carbon 48:1902–1911

    Article  Google Scholar 

  15. Loidl A, Knorr K, Müllner M, Buschow KHJ (1981) Magnetic properties of some rare earth magnesium compounds RMg2. J Appl Phys 52(3):1433–1438

    Article  Google Scholar 

  16. Buschow KHJ (1976) Magnetic properties of some rare earth magnesium compounds RMg3. J Less-Common Metals 44:301–306

    Article  Google Scholar 

  17. Darriet B, Pezat M, Hbika A, Hagenmuller P (1980) Application of magnesium rich rare-earth alloys to hydrogen storage. Int J Hydrog Energy 5:173–178

    Article  Google Scholar 

  18. Fornasini ML, Manfrinetti P (1986) GdMg5: a complex structure with a large cubic cell. Acta crystallographica C 42:138–141

    Article  Google Scholar 

  19. Evdokimenko VI, Kripyakevich PI (1940) Ueber die loeslickeit von lanthan in aluminium, magnesium und den homogenen legierungen des magnesiums und aluminiums. Zeitschrift für angewandte chemie 46(6):357–364

    Google Scholar 

  20. Janot R, Cuevas F, Latroche M, Percheron-Guégan A (2006) Influence of crystallinity on the structural and hydrogenation properties of Mg2X phases (X = Ni, Si, Ge, Sn). Intermetallics 14:163–169

    Article  Google Scholar 

  21. Buschow KHJ, Bouten PCP, Miedema AR (1982) Hydrides formed from intermetallic compounds of two transition metals: a special class of ternary alloys. Rep Prog Phys 45:937–1039

    Article  Google Scholar 

  22. Latroche M (2004) Structural and thermodynamic properties of metallic hydrides used for energy storage. J Phys Chem Solids 65:517–522

    Article  Google Scholar 

  23. Latroche M, Percheron-guégan A (2005) Hydrogen storage properties of metallic hydrides. Annales de chimie science des matériaux 30(5):471–482

    Article  Google Scholar 

  24. Govind, Suseelan Nair K, Mittal MC, Lal K, Mahanti RK, Sivaramakrishnan CS (2001) Development of rapidly solidified (RS) magnesium–aluminium–zinc alloy. Mater Sci Eng A 304–306:520–523

    Google Scholar 

  25. Pettersen G, Westengen H, Hoier R, Lohne O (1996) Microstructure of a pressure die cast magnesium—4wt.% aluminium alloy modified with rare earth additions. Mater Sci Eng A207:115–120

    Article  Google Scholar 

  26. Peng Q, Hou X, Wang L, Wu Y, Cao Z, Wang L (2009) Microstructure and mechanical properties of high performance Mg–Gd based alloys. Mater Des 30:292–296

    Article  Google Scholar 

  27. Inoue A (1998) Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog Mater Sci 43:365–520

    Article  Google Scholar 

  28. Petricek V, Dusek M, Palatinus L (2006). Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic

    Google Scholar 

  29. Couillaud S, Gaudin E, Bobet JL (2011) Rich magnesium ternary compound so-called LaCuMg8 derived from La2Mg17. Structure and hydrogenation behavior. Intermetallics 19:336–341

    Article  Google Scholar 

  30. Schulz R, Boily S, Huot J (1999) Apparatus for titration and circulation of gases and circulation of an absorbent or adsorbent substance. Patent 09/424,331

    Google Scholar 

  31. Gross K, Chartouni D, Leroy E, Zuttel A, Schlapbach L (1998) Mechanically milled Mg composites for hydrogen storage: the relationship between morphology and kinetics. J Alloy Compd 269:259–270

    Article  Google Scholar 

  32. Schubert K, Anderko K (1951) Kristallstruktur von NiMg2 und AuMg2. Naturwissenschaften 38(11):259

    Article  Google Scholar 

  33. Noreus D (1985) Structurally related phenomena in Mg2NiH4. Chemica Scripta 26A:103–106

    Google Scholar 

  34. Noreus D, Werner P-E (1982) Structural studies of hexagonal Mg2NiHx. Acta Chemical Scandinavica A36:847–851

    Article  Google Scholar 

  35. Darnaudery JP, Pezat M, Darriet B (1983) Influence de la substitution du cuivre au nickel dans Mg2Ni sur le stockage de l’hydrogène. Journal Less-Common Metals 92:199–205

    Article  Google Scholar 

  36. Zaluski L, Zaluska A, Ström-Olsen JO (1995) Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J Alloy Compd 217:245–249

    Article  Google Scholar 

  37. Abdellaoui M, Cracco D, Percheron-Guegan A (1998) Structural characterization and reversible hydrogen absorption properties of Mg Ni rich nanocomposite materials synthesized by mechanical alloying. J Alloy Compd 268:233–240

    Article  Google Scholar 

  38. Selvam P, Viswanathan B, Swamy CS, Srinivasan V (1988) Studies on the thermal characteristics of hydrides of Mg, Mg2Ni, Mg2Cu and Mg2Ni1-xMx (M = Fe Co, Cu, or Zn; 0 < x < 1) alloys. Int J Hydrog Energy 13(2):87–94

    Article  Google Scholar 

  39. Latka K, Kmiec R, Pacyna AW, Mishra R, Pöttgen R (2001) Magnetism and hyperfine interactions in Gd2Ni2Mg. Solid State Sci 3:545–558

    Article  Google Scholar 

  40. Pöttgen R, Fugmann A, Rodewald UC, Niepmann D (2000) Intermetallic cerium compounds with ordered U3Si2 type structure. Zeitschrift naturforschung 55b:155–161

    Google Scholar 

  41. Mishra R, Hoffmann RD, Pöttgen R (2001) New magnesium compounds RE2Cu2Mg (RE = Y, La-Nd, Sm, Gd-Tm, Lu) with Mo2FeB2 type structure. Zeitschrift naturforschung 56b:239–244

    Google Scholar 

  42. Hoffmann R-D, Fugmann A, Rodewald UC, Pöttgen R (2000) New intermetallic compounds Ln2Ni2Mg (Ln = Y, La-Nd, Sm, Gd-Tm) with Mo2FeB2 structure. Z Anorg Allg Chem 626:1733–1738

    Article  Google Scholar 

  43. Rieger W, Nowotny H, Benesovsky F (1964) Die Kristallstruktur von Mo2FeB2 – Kurze Mitteilung. Monatshefte fur chemie und verwandte teile anderer wissenschaften 95:1502–1503

    Article  Google Scholar 

  44. Couillaud S, Gaudin E, Andrieux J, Gorsse S, Gayot M, Bobet JL (2012) Study of the hydrogenation mechanism of LaCuMg8 ternary phase: the decomposition induces kinetics improvement. Int J Hydrogen Energy 37:11824–11834

    Article  Google Scholar 

  45. Rodewald UC, Chevalier B, Pöttgen R (2007) Rare earth-transition metal-magnesium compounds—an overview. J Solid State Chem 180:1720–1736

    Article  Google Scholar 

  46. Chotard JN, Filinchuk Y, Revaz B, Yvon K (2006) Isolated [Ni2H7]7- and [Ni4H12]12- ions in La2MgNi2H8. Angewandte chemie international edition 45:7770–7773

    Google Scholar 

  47. Chevalier B, Krolak AA, Bobet J-L, Gaudin E, Weill F, Hermes W, Pöttgen R (2008) On the strongly correlated electron hydride Ce2Ni2MgH7.7. Inorg Chem 47(22):10419–10424

    Article  Google Scholar 

  48. Renaudin G, Guénée L, Yvon K (2003) LaMgNiH7, a novel quaternary metal hydride containing tetrahedral [NiH4]4- complexes and hydride anions. J Alloy Compd 350:145–150

    Article  Google Scholar 

  49. Kadir K, Sakai T, Uehara I (1997) Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves type layers alternating with AB5 layers. J Al Compds 257:115–121

    Article  Google Scholar 

  50. Kadir K, Sakai T, Uehara I (2000) Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35) (Mg1.32Ca0.68)Ni9 of the AB2C9 type structure. J Al Compds 302:112–117

    Google Scholar 

  51. Kadir K, Kuriyama N, Sakai T, Uehara I, Eriksson L (1999) Structural investigation and hydrogen capacity of CaMg2Ni9: a new phase in the AB2C9 system isostructural with LaMg2Ni9. J Al Compds 284:145–154

    Article  Google Scholar 

  52. Geibel C, Klinger U, Weiden M, Buschinger B, Steglich F (1997) Magnetic properties of new Ce-T-Mg compounds (T = Ni, Pd). Phys B 237–238:202–204

    Article  Google Scholar 

  53. Guénée L, Favre-Nicolin V, Yvon K (2003) Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg. J Alloy Compd 348:129–137

    Article  Google Scholar 

  54. Bobet J-L, Lesportes P, Roquefere J-G, Chevalier B, Asano K, Sakaki K, Akiba E (2007) A preliminary study of some “pseudo-AB2” compounds: RENi4Mg with RE = La, Ce and Gd. Structural and hydrogen sorption properties. Int J Hydrog Energy 32:2422–2428

    Article  Google Scholar 

  55. Aono1 K, Orimo S, Fujii H (2000) Structural and hydriding properties of MgYNi4: a new intermetallic compound with C15b-type Laves phase structure. J Alloy Compd 309:L1–L4

    Google Scholar 

  56. Kadir K, Noreus D, Yamashita I (2002) Structural determination of AMgNi4 (where A = Ca, La, Ce, Pr, Nd and Y) in the AuBe5 type structure. J Alloy Compd 345:140–143

    Article  Google Scholar 

  57. Osamura K, Murakami Y (1978) Crystal-structures of CuSnMg and Cu4SnMg ternary compounds. J Less-Common Metals 60:311–313

    Article  Google Scholar 

  58. Stan C, Andronescu E, Asano K, Sakaki K, Bobet J-L (2008) In situ X-ray diffraction under H2 of the pseudo-AB2 compounds: YNi3.5Al0.5Mg. Int J Hydrog Energy 33:2053–2058

    Article  Google Scholar 

  59. Stan C, Andronescu E, Predoi D, Bobet J-L (2008) Structural and hydrogen absorption/desorption properties of YNi4−xAlxMg compounds (with 0 ≤ x≤1.5). J Alloy Compd 461:228–234

    Article  Google Scholar 

  60. Stan C, Asano K, Sakaki K, Akiba E, Couillaud S, Bobet J-L (2009) In situ XRD for pseudo Laves phases hydrides highlighting the remained cubic structure. Int J Hydrog Energy 34:3038–3043

    Article  Google Scholar 

  61. Luo ZP, Zhang SQ (2000) High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy. J Mater Sci Lett 19:813–815

    Article  Google Scholar 

  62. Park ES, Chang HJ, Kim DH (2007) Mg-rich Mg–Ni–Gd ternary bulk metallic glasses with high compressive specific strength and ductility. J Mater Res 22(2):334–338

    Article  Google Scholar 

  63. Solokha P, De Negri S, Pavlyuk V, Saccone A, Marciniak B (2007) Crystallochemistry of the novel two-layer RECuMg4 (RE = La, Tb) ternary compounds. J Solid State Chem 180:3066–3075

    Article  Google Scholar 

  64. Teresiak A, Gebert A, Savyak M, Uhlemann M, Mickel Ch, Mattern N (2005) In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen. J Alloy Compd 398:156–164

    Article  Google Scholar 

  65. Kalinichenka S, Röntzsch L, Baehtz C, Kieback B (2010) Hydrogen desorption kinetics of melt-spun and hydrogenated Mg90Ni10 and Mg80Ni10Y10 using in situ synchrotron. X-ray diffraction and thermogravimetry. J Alloy Compd 496(1–2):608–613

    Article  Google Scholar 

  66. Gebert A, Khorkounov B, Wolff U, Mickel Ch, Uhlemann M, Schultz L (2006) Stability of rapidly quenched and hydrogenated Mg–Ni–Y and Mg–Cu–Y alloys in extreme alkaline medium. J Alloy Compd 419:319–327

    Article  Google Scholar 

  67. Hagihara K, Yokotani N, Umakoshi Y (2010) Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics 18(2):267–276

    Article  Google Scholar 

  68. De Negri S, Giovannini M, Saccone A (2007) Constitutional properties of the La–Cu–Mg system at 400 °C. J Alloy Compd 427:134–141

    Article  Google Scholar 

  69. Opainich IM, Pavlyuk VV, Bodak OI (1996) Crystal structure of a Ce2Fe2Mg15 compound. Crystallogr Rep 41(5):813–816

    Google Scholar 

  70. Florio JV, Baenziger NC, Rundle RE (1956) Compounds of thorium with transition metals. II. Systems with iron, cobalt and nickel. Acta Crystallogr A 9:367–372

    Article  Google Scholar 

  71. Givord D, Givord F, Lemaire R, James WJ, Shah JS (1972) Evidence of disordered substitutions in the “Th2Ni17-type” structure. Exact determination of the Th-Ni, Y-Ni and Er- Co compounds. J Less-Common Metals 29:389–396

    Google Scholar 

  72. Johnson Q, Smith GS (1967) Refinement of the Th2Ni17-Type structure: CeMg10.3. Acta Crystallogr A 23:327–329

    Article  Google Scholar 

  73. Isnard O, Miraglia S, Soubeyroux JL, Fruchart D, Stergiou A (1990) Neutron diffraction study of the structural and magnetic properties of the R2Fe17Hx(Dx) ternary compounds (R = Ce, Nd and Ho). J Less-Common Metals 162:273–284

    Article  Google Scholar 

  74. Tereshina I, Nikitin S, Suski W, Stepien-Damm J, Iwasieczko W, Drulis H, Skokov K (2005) Structural and magnetic properties of Dy2Fe17Hx (x = 0 and 3) single crystals. J Alloy Compd 404–406:172–175

    Article  Google Scholar 

  75. Block G, Jeitschko W (1987) Tb2Mn17C3-x with filled Th2Ni17-type structure and some structural and magnetic properties of related compounds. J Solid State Chem 70:271–280

    Article  Google Scholar 

  76. Fischer P, Halg W, Schlapbach L, Yvon K (1978) Neutron and X-ray diffraction investigation of deuterium storage. J Less-Common Metals 60(1):1–9

    Article  Google Scholar 

  77. Zachariasen WH, Holley CE, Stamper Jnr JF (1963) Neutron diffraction study of magnesium deuteride. Acta Crystallogr A 16:352–353

    Article  Google Scholar 

  78. Yajima S, Kayano H, Toma H (1977) Hydrogen sorption in La2Mg17. J Less-Common Metals 55:139–141

    Article  Google Scholar 

  79. Slattery DK (1995) The hydriding-dehydriding characteristics of La2Mg17. Int J Hydrog Energy 20(12):971–973

    Article  Google Scholar 

  80. Khrussanova M, Pezat M, Darriet B, Hagenmuller P (1982) Le stockage de l’hydrogène par les alliages La2Mg17 et La2Mg16Ni. J Less-Common Metals 86:153–160

    Article  Google Scholar 

  81. Khrussanova M, Terzieva M, Peshev P (1986) On the hydriding kinetics of the alloys La2Mg17 and La2−xCaxMg17. Int J Hydrog Energy 1(5):331–334

    Article  Google Scholar 

  82. Sun D, Gingl F, Nakamura Y, Enoki H, Bououdina M, Akiba E (2002) In situ X-Ray diffraction study of hydrogen-induced phase decomposition in LaMg12 and La2Mg17. J Alloy Compd 333:103–108

    Article  Google Scholar 

  83. Wang L, Wang X, Chen L, Gao L, Xiao X, Chen C (2006) Effects of surface modification on the electrode behavior of ball-milled La2 Mg17 + 200 wt% Ni composite in alkaline solution. J Alloy Compd 420:306–311

    Article  Google Scholar 

  84. Gao XP, Lu ZW, Wang Y, Wu F, Song DY, Shen PW (2004) Electrochemical hydrogen storage of nanocrystalline La2Mg17 alloy ball-milled with Ni Powders. Electrochem Solid-State Lett 7(5):A102–A104

    Article  Google Scholar 

  85. Reilly JJ, Wiswall RH (1967) The reaction of hydrogen with alloys of magnesium and copper. Inorg Chem 6(12):2220–2223

    Article  Google Scholar 

  86. Huot J, Liang G, Boily S, Van Neste A, Schulz R (1999) Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloy Compd 293–295:495–500

    Article  Google Scholar 

  87. Palumbo M, Torres FJ, Ares JR, Pisani C, Fernandez JF, Baricco M (2007) Thermodynimic and ab initio investigation of the Al-H-Mg system. Comput Coupling Phase Diagrams Thermochem 31:457–467

    Article  Google Scholar 

  88. Gorsse S, Shiflet GJ (2002) A thermodynamic assessment of the Cu-Mg-Ni ternary system. Comput Coupling Phase Diagrams Thermochem 26(1):63–83

    Article  Google Scholar 

  89. Andreasen A, Sørensen MB, Burkarl R, Møller B, Molenbroek AM, Pedersen AS, Vegge T, Jensen JN (2006) Dehydrogenation kinetics of air-exposed MgH2/Mg2Cu and MgH2/MgCu2 studied with in situ X-ray powder diffraction. Appl Phys A 82:515–521

    Article  Google Scholar 

  90. Shao H, Wang Y, Xu H, Li X (2005) Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy. J Solid State Chem 178:2211–2217

    Article  Google Scholar 

  91. Karty A, Grunzweig-Genossar J, Rudman PS (1979) Hydriding and dehydriding kinetics of Mg in a Mg/Mg Cu eutectic alloy: pressure sweep method. J Appl Phys 50(11):7200–7210

    Article  Google Scholar 

  92. Au M, Wu J, Wang Q (1995) The hydrogen storage properties and the mechanism of the hydriding process of some multi-component magnesium- base hydrogen storage. Int J Hydrogen Energy 20(2):141–150

    Article  Google Scholar 

  93. De Bruijn TJW, De Jong WA, Van den berg PJ (1981) Kinetic parameters in Avrami-Erofeev type reactions from isothermal and non-isothermal experiments. Thermochimica Acta 45:315–325

    Google Scholar 

  94. Barkhordarian G, Klassen T, Bormann R (2004) Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J Alloy Compd 364:242–246

    Article  Google Scholar 

  95. Bobet JL, Kandavel M, Ramaprabhu S (2006) Effects of ball milling condition and additives on the hydrogen sorption properties of Mg + 5wt% Cr2O3 mixtures. J Mater Res 21(7):1747–1752

    Article  Google Scholar 

  96. Wu CZ, Wang P, Yao X, Liu C, Chen DM, Lu GQ, Cheng HM (2006) Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. J Alloy Compd 420:278–282

    Article  Google Scholar 

  97. Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J Alloy Compd 292:247–252

    Article  Google Scholar 

  98. Zhang LT, Ito K, Vasudevan VK, Yamaguchi M (2002) Effects of cold-rolling on the hydrogen absorption/desorption behaviour of Ti–22Al–27Nb alloys. Mater Sci Eng A329–331:362–366

    Article  Google Scholar 

  99. Zhang LT, Ito K, Vasudevan VK, Yamaguchi M (2001) Hydrogen absorption and desorption in a B2 single-phase Ti-22Al-27Nb alloy before and after deformation. Acta Materalia 49:751–758

    Article  Google Scholar 

  100. Couillaud S, Enoki H, Amira S, Bobet JL, Akiba E, Huot J (2009) Effect of ball milling and cold rolling on hydrogen storage properties of nanocrystalline TiV1.6Mn0.4 alloy. J Alloy Compd 484:154–158

    Article  Google Scholar 

  101. Dufour J, Huot J (2007) Rapid activation, enhanced hydrogen sorption kinetics and air resistance in laminated Mg–Pd 2.5at.%. J Alloy Compd 439:L5–L7

    Article  Google Scholar 

  102. Zaluska A, Zaluski L, Ström-Olsen JO (1999) Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni. J Alloy Compd 289:197–206

    Article  Google Scholar 

  103. Li Z, Liu L, Jiang L, Wang S (2007) Characterization of Mg-20wt% Ni-Y hydrogen storage composite prepared by reactive mechanical alloying. Int J Hydrog Energy 32:1869–1874

    Article  Google Scholar 

  104. Swanson HE, Tatge E (1959) structure of Mg. J Res Nat Bur Stand 46:318–327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-L. Bobet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bobet, JL., Gaudin, E., Couillaud, S. (2018). New Ternary Intermetallics Based on Magnesium for Hydrogen Storage: The Fishing Approach. In: Souza, F., Leite, E. (eds) Nanoenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-62800-4_10

Download citation

Publish with us

Policies and ethics