Skip to main content

A Feasibility Pump and a Local Branching Heuristics for the Weight-Constrained Minimum Spanning Tree Problem

  • Conference paper
  • First Online:
  • 1807 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10405))

Abstract

The Weight-constrained Minimum Spanning Tree problem (WMST) is a combinatorial optimization problem aiming to find a spanning tree of minimum cost with total edge weight not exceeding a given specified limit. This problem has important applications in the telecommunications network design and communication networks.

In order to obtain optimal or near optimal solutions to the WMST problem we use heuristic methods based on formulations for finding feasible solutions. The feasibility pump heuristic starts with the LP solution, iteratively fixes the values of some variables and solves the corresponding LP problem until a feasible solution is achieved. In the local branching heuristic a feasible solution is improved by using a local search scheme in which the solution space is reduced to the neighborhood of a feasible solution that is explored for a better feasible solution. Extensive computational results show that these heuristics are quite effective in finding feasible solutions and present small gap values. Each heuristic can be used independently, however the best results were obtained when they are used together and the feasible solution obtained by the feasibility pump heuristic is improved by the local branching heuristic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achterberg, T., Berthold, T.: Improving the feasibility pump. Discrete Optim. 4(1), 77–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, V., Aneja, Y.P., Nair, K.P.K.: Minimal spanning tree subject to a side constraint. Comput. Oper. Res. 9, 287–296 (1982)

    Article  Google Scholar 

  3. Agra, A., Cerveira, A., Requejo, C., Santos, E.: On the weight-constrained minimum spanning tree problem. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 156–161. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21527-8_20

    Chapter  Google Scholar 

  4. Agra, A., Requejo, C., Santos, E.: Implicit cover inequalities. J. Combin. Optim. 31(3), 1111–1129 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertacco, L., Fischetti, M., Lodi, A.: A feasibility pump heuristic for general mixed-integer problems. Discrete Optim. 4(1), 63–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hansen, P., Mladenović, N., Urošević, D.: Variable neighborhood search and local branching. Comput. Oper. Res. 33(10), 3034–3045 (2006)

    Article  MATH  Google Scholar 

  9. Hassin, R., Levin, A.: An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem using matroid intersection. SIAM J. Comput. 33(2), 261–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henn, S.: Weight-constrained minimum spanning tree problem. Master’s thesis, University of Kaiserslautern, Kaiserslautern, Germany (2007)

    Google Scholar 

  11. Hong, S., Chung, S., Park, B.H.: A fully polynomial bicriteria approximation scheme for the constrained spanning tree problem. Oper. Res. Lett. 32, 233–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: Ball, M., Magnanti, T.L., Monma, C., Nemhauser, G.L. (eds.) Network Models, Handbooks in Operations Research and Management Science, vol. 7, pp. 503–615. Elsevier Science Publishers, North-Holland (1995)

    Google Scholar 

  13. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9), 2271–2284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996). doi:10.1007/3-540-61422-2_121

    Chapter  Google Scholar 

  16. Requejo, C., Agra, A., Cerveira, A., Santos, E.: Formulations for the weight-constrained minimum spanning tree problem. AIP Conf. Proc. 1281, 2166–2169 (2010)

    Article  MATH  Google Scholar 

  17. Requejo, C., Santos, E.: Lagrangian based algorithms for the weight-constrained minimum spanning tree problem. In: Proceedings of the VII ALIO/EURO Workshop on Applied Combinatorial Optimization, pp. 38–41 (2011)

    Google Scholar 

  18. Shogan, A.: Constructing a minimal-cost spanning tree subject to resource constraints and flow requirements. Networks 13, 169–190 (1983)

    Article  MathSciNet  Google Scholar 

  19. Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20(3), 472–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xue, G.: Primal-dual algorithms for computing weight-constrained shortest paths and weight-constrained minimum spanning trees. In: Proceedings of the IEEE International Conference on Performance, Computing, and Communications, pp. 271–277 (2000)

    Google Scholar 

  21. Yamada, T., Watanabe, K., Kataoka, S.: Algorithms to solve the knapsack constrained maximum spanning tree problem. Int. J. Comput. Math. 82, 23–34 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the authors has been partially supported by Portuguese funds through the CIDMA (Center for Research and Development in Mathematics and Applications) and the FCT, the Portuguese Foundation for Science and Technology, within project UID/MAT/04106/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Requejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Requejo, C., Santos, E. (2017). A Feasibility Pump and a Local Branching Heuristics for the Weight-Constrained Minimum Spanning Tree Problem. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10405. Springer, Cham. https://doi.org/10.1007/978-3-319-62395-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62395-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62394-8

  • Online ISBN: 978-3-319-62395-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics