Abstract
ENIGMA is a learning-based method for guiding given clause selection in saturation-based theorem provers. Clauses from many previous proof searches are classified as positive and negative based on their participation in the proofs. An efficient classification model is trained on this data, classifying a clause as useful or un-useful for the proof search. This learned classification is used to guide next proof searches prioritizing useful clauses among other generated clauses. The approach is evaluated on the E prover and the CASC 2016 AIM benchmark, showing a large increase of E’s performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use E Prover 1.9.1 (http://www.eprover.org/).
- 2.
We use
.
- 3.
AIM is a long-term and large-scale project [15] in applied automated deduction concerned with proving open algebraic conjectures by Kinyon and Veroff.
- 4.
Different proof search settings (term orderings, rewriting settings, etc.) may largely change the proof search and make training examples incompatible. That is to say, a classifier trained on proofs produced with some proof search settings should be used only with the same settings. In our case, the proof search settings used to produce competition proofs are not known. Thus we resort to a single E prover strategy and generate compatible training data ourselves.
- 5.
All the experiments were performed at Intel Xeon 2.3 GHz workstation.
- 6.
We use Vampire 4.0 in CASC mode.
- 7.
In an initial experiment, a simple nearest-neighbor selection of training problems for the learning further decreases the solving times and proves one more AIM problem unsolved by Prover9.
References
Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning 57(3), 219–244 (2016)
Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formalized Reasoning 9(1), 101–148 (2016)
Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: COLT, pp. 144–152. ACM (1992)
Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
Färber, M., Kaliszyk, C., Urban, J.: Monte Carlo connection prover. CoRR, abs/1611.05990 (2016)
Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) Global Conference on Artificial Intelligence (GCAI 2015), Tbilisi, Georgia. EPiC Series in Computing, EasyChair, vol. 36, 16–19 October 2015
Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 246–255. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_16
Hsieh, C., Chang, K., Lin, C., Keerthi, S.S., Sundararajan, S.: A dual coordinate descent method for large-scale linear SVM. In: ICML, ACM International Conference Proceeding Series, vol. 307, pp. 408–415. ACM (2008)
Jakubuv, J., Urban, J.: BliStrTune: hierarchical invention of theorem proving strategies. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2017), Paris, France. pp. 43–52. ACM. 16–17 January 2017(2017)
Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reasoning 53(2), 173–213 (2014)
Kaliszyk, C., Urban, J.: FEMaLeCoP: Fairly efficient machine learning connection prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7_7
Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reasoning 55(3), 245–256 (2015)
Kaliszyk, C., Urban, J., Vyskočil, J.: Machine learner for automated reasoning 0.4 and 0.5. CoRR, abs/1402.2359, 2014, Accepted to (PAAR 2014)
Kaliszyk, C., Urban, J., Vyskočil, J.: Efficient semantic features for automated reasoning over large theories. In: Yang, Q., Wooldridge, M. (eds.) IJCAI 2015, pp. 3084–3090. AAAI Press (2015)
Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with Abelian inner mapping groups: an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 151–164. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36675-8_8
Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_1
Kühlwein, D., Urban, J.: MaLeS: A framework for automatic tuning of automated theorem provers. J. Autom. Reasoning 55(2), 91–116 (2015)
Lin, C., Weng, R.C., Keerthi, S.S.: Trust region newton method for logistic regression. J. Mach. Learn. Res. 9, 627–650 (2008)
Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb. Comput. 36(1–2), 139–161 (2003)
Schäfer, S., Schulz, S.: Breeding theorem proving heuristics with genetic algorithms. In: Gottlob et al. [6], pp. 263–274
Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2–3), 111–126 (2002)
Sutcliffe, G.: The 8th IJCAR automated theorem proving system competition - CASC-J8. AI Commun. 29(5), 607–619 (2016)
Urban, J.: BliStr: The Blind Strategymaker. In: Gottlob et al. [6], pp. 312–319
Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - Machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 441–456. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7_37
Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 263–277. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22119-4_21
Acknowledgments
We thank Stephan Schulz for his open and modular implementation of E and its many features that allowed us to do this work. We also thank the Machine Learning Group at National Taiwan University for making LIBLINEAR openly available. This work was supported by the ERC Consolidator grant no. 649043 AI4REASON.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
The E Prover Strategy Used in Experiments
The E Prover Strategy Used in Experiments
The following fixed E strategy \(S_0\), described by its command line arguments, was used in the experiments:

Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Jakubův, J., Urban, J. (2017). ENIGMA: Efficient Learning-Based Inference Guiding Machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds) Intelligent Computer Mathematics. CICM 2017. Lecture Notes in Computer Science(), vol 10383. Springer, Cham. https://doi.org/10.1007/978-3-319-62075-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-62075-6_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62074-9
Online ISBN: 978-3-319-62075-6
eBook Packages: Computer ScienceComputer Science (R0)