Skip to main content

Chapter 10 Harmonic Maps from Riemann Surfaces

  • Chapter
  • First Online:
Riemannian Geometry and Geometric Analysis

Part of the book series: Universitext ((UTX))

  • 7159 Accesses

Abstract

In this chapter, harmonic maps from Riemann surfaces are discussed. We encounter here the phenomenon of conformal invariance which distinguishes the two-dimensional case from the higher dimensional one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the bibliography, a superscript will indicate the edition of a monograph. For instance,72017 means 7th edition, 2017.

Bibliography

  1. F. Almgren. Questions and answers about area-minimizing surfaces and geometric measure theory. Proc. Symp. Pure Math., 54(I):29–53, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Almgren and L. Simon. Existence of embedded solutions of Plateau’s problem. Ann. Sc. Norm. Sup. Pisa, 6:447–495, 1979.

    MathSciNet  MATH  Google Scholar 

  3. H. Bass and J. Morgan (eds.). The Smith conjecture. Academic Press, 1984.

    Google Scholar 

  4. H. Brézis and J. Coron. Large solutions for harmonic maps in two dimensions. Comm. Math. Phys, 92:203–215, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  5. K.C. Chang. Heat flow and boundary value problem for harmonic maps. Anal. Nonlinéaire, 6:363–396, 1989.

    MathSciNet  MATH  Google Scholar 

  6. Q. Chen, J. Jost, J.Y. Li, and G.F. Wang. Regularity theorems and energy identities for Dirac-harmonic maps. Math.Zeitschr., 251:61–84, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  7. Q. Chen, J. Jost, J.Y. Li, and G.F. Wang. Dirac-harmonic maps. Math.Zeitschr., 254:409–432, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Courant. Remarks on Plateau’s and Douglas’ problem. Proc.Nat. Acad.Sci., 24:519–523, 1938.

    Google Scholar 

  9. R. Courant. The existence of minimal surfaces of given topological structure under prescribed boundary conditions. Acta Math., 72:51–98, 1940.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Courant. Critical points and unstable minimal surfaces. Proc.Nat. Acad.Sci., 27:51–57, 1941.

    Google Scholar 

  11. W.Y. Ding. Lusternik-Schnirelman theory for harmonic maps. Acta Math. Sinica, 2:105–122, 1986.

    Article  MathSciNet  Google Scholar 

  12. J. Douglas. Solution of the problem of Plateau. Bull. Amer. Math. Soc., 35:292, 1929.

    MATH  Google Scholar 

  13. J. Douglas. Solution of the problem of Plateau for any rectifiable contour in n-dimensional Euclidean space. Bull. Amer. Math. Soc., 36:189, 1930.

    MATH  Google Scholar 

  14. J. Douglas. The problem of Plateau for two contours. J. Math. Phys., 10:315–359, 1931.

    Article  MATH  Google Scholar 

  15. J. Douglas. Solution of the problem of Plateau. Trans. Amer. Math. Soc., 33:263–321, 1931.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Douglas. One-sided minimal surfaces with a given boundary. Trans. Amer. Math. Soc., 34:731–756, 1932.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Douglas. Minimal surfaces of higher topological structure. Proc.Nat.Acad.Sci., 24:297–302, 1938.

    Article  Google Scholar 

  18. J. Douglas. Minimal surfaces of higher topological structure. Ann.Math., 40:205–298, 1938.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Douglas. The most general form of the problem of Plateau. Am.J..Math., 61:590–608, 1939.

    Google Scholar 

  20. H. Federer. Geometric measure theory. Springer, 1979.

    MATH  Google Scholar 

  21. M. Grüter. Regularity of weak H-surfaces. J. reine angew. Math., 329:1–15, 1981.

    MathSciNet  MATH  Google Scholar 

  22. R. Gulliver and S. Hildebrandt. Boundary configurations spanning continua of minimal surfaces. manuscr. math., 54:323–347, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Hardt and L. Simon. Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. Math., 110:439–486, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Hartman and A. Wintner. On the local behavior of solutions of non-parabolic partial differential equations. American Journal of Mathematics, 75(3):449–476, 1953.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Heinz. Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern. Mathematische Zeitschrift, 113(2):99–105, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Heinz. Interior gradient estimates for surfaces z = f(x, y) with prescribed mean curvature. Journal of Differential Geometry, 5(1–2):149–157, 1971.

    Google Scholar 

  27. F. Hélein. Régularité des applications faiblement harmoniques entre une surface et une varieté riemannienne. C.R. Acad. Sci. Paris, 312:591–596, 1991.

    MathSciNet  MATH  Google Scholar 

  28. F. Hélein. Harmonic maps, conservation laws and moving frames. Cambridge Univ.Press, 2002.

    Book  MATH  Google Scholar 

  29. S. Hildebrandt. Boundary behavior of minimal surfaces. Arch.Rat.Mech.Anal., 35:47–82, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Hopf. Differential geometry in the large, volume 1000 of LNM. Springer,21989.

    Google Scholar 

  31. J. Jost. The Dirichlet problem for harmonic maps from a surface with boundary onto a 2-sphere with non-constant boundary values. J. Diff. Geom., 19:393–401, 1984.

    Article  MATH  Google Scholar 

  32. J. Jost. Conformal mappings and the Plateau-Douglas problem in Riemannian manifolds. J. reine angew. Math., (359):37–54, 1985.

    MathSciNet  MATH  Google Scholar 

  33. J. Jost. Two-dimensional geometric variational problems. Wiley-Interscience, 1991.

    MATH  Google Scholar 

  34. J. Jost. Unstable solutions of two-dimensional geometric variational problems. Proc. Symp. Pure Math, 54(I):205–244, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Jost. Orientable and nonorientable minimal surfaces. Proc. First World Congress of Nonlinear Analysts, Tampa, Florida, 1992:819–826, 1996.

    Google Scholar 

  36. J. Jost. Riemannian geometry and geometric analysis. Springer,72017.

    Google Scholar 

  37. J. Jost and M. Struwe. Morse-Conley theory for minimal surfaces of varying topological type. Inv. math., 102:465–499, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Lemaire. Applications harmoniques de surfaces riemanniennes. J. Diff. Geom., 13:51–78, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  39. X. Li-Jost. Uniqueness of minimal surfaces in Euclidean and hyperbolic 3-spaces. Math.Z., 317:275–289, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. McDuff and D. Salamon. J-holomorphic curves and quantum cohomology. Amer.Math.Soc., 1994.

    Google Scholar 

  41. W. Meeks and S.T. Yau. The classical Plateau problem and the topology of three-dimensional manifolds. Top., 21:409–440, 1982.

    MATH  Google Scholar 

  42. M. Micallef and J.D. Moore. Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math., 127:199–227, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Morgan. A smooth curve in \(\mathbb{R}^{3}\) bounding a continuum of minimal manifolds. Arch. Rat. Mech. Anal., 75:193–197, 1976.

    MathSciNet  Google Scholar 

  44. C. Morrey. The problem of Plateau on a Riemannian manifold. Ann.Math., 49:807–851, 1948.

    Article  MathSciNet  MATH  Google Scholar 

  45. J.C.C. Nitsche. A new uniqueness theorem for minimal surfaces. Arch.Rat.Mech.Anal., 52:319–329, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Parker and J. Wolfson. A compactness theorem for Gromov’s moduli space. J. Geom. Analysis, 3:63–98, 1993.

    Article  MathSciNet  Google Scholar 

  47. T. Radó. On Plateau’s problem. Ann.Math., 31:457–469, 1930.

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Radó. The problem of least area and the problem of Plateau. Math. Z., 32:763–796, 1930.

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Rivière. Conservation laws for conformally invariant variational problems. Invent. Math., 68:1–22, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Rivière and M. Struwe. Partial regularity for harmonic maps and related problems. Comm.Pure Appl.Math., 61:451–463, 2008.

    Google Scholar 

  51. J. Sacks and K. Uhlenbeck. The existence of minimal immersions of 2-spheres. Ann. Math., 113:1–24, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Shiffman. The Plateau problem for non-relative minima. Ann.Math.40, 40:834–854, 1939.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Shiffman. Unstable minimal surfaces with several boundaries. Ann.Math.40, 43:197–222, 1942.

    Article  MathSciNet  MATH  Google Scholar 

  54. Y.T. Siu and S.T. Yau. Compact Kähler manifolds of positive bisectional curvature. Inv. math., 59:189–204, 1980.

    Article  MATH  Google Scholar 

  55. M. Struwe. On a critical point theory for minimal surfaces spanning a wire in \(\mathbb{R}^{n}\). J. Reine Angew. Math., 349:1–23, 1984.

    MathSciNet  MATH  Google Scholar 

  56. M. Struwe. On the evolution of harmonic mappings. Comm. Math. Helv., 60:558–581, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Struwe. A Morse theory for annulus-type minimal surfaces. J. Reine Angew. Math., 368:1–27, 1986.

    MathSciNet  MATH  Google Scholar 

  58. M. Struwe. Variational methods. Springer,42008.

    Google Scholar 

  59. F. Tomi and A. Tromba. Extreme curves bound an embedded minimal surface of disk type. Math. Z., 158:137–145, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Wente. Large solutions of the volume constrained Plateau problem. Arch.Rat.Mech.Anal., 75:59–77, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  61. H. Wente. Counterexample to a question of H.Hopf. Pac.J.Math., 121:193–243, 1986.

    Google Scholar 

  62. R.G. Ye. Gromov’s compactness theorem for pseudoholomorphic curves. Trans.Am.Math.Soc, 342:671–694, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jost, J. (2017). Chapter 10 Harmonic Maps from Riemann Surfaces. In: Riemannian Geometry and Geometric Analysis. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-61860-9_11

Download citation

Publish with us

Policies and ethics