Skip to main content

Chapter 1 Riemannian Manifolds

  • Chapter
  • First Online:
Riemannian Geometry and Geometric Analysis

Part of the book series: Universitext ((UTX))

  • 7275 Accesses

Abstract

In this chapter, the basic geometric concepts of Riemannian geometry are introduced. After treating differentiable manifolds, we introduce Riemannian metrics on them. Key concepts are the exponential map, Riemann normal coordinates, and in particular, that of a geodesic. The existence of geodesics is treated with two different methods. The first method is based on the local existence and uniqueness of geodesics. The second method is the heat flow method that gained prominence through Perelman’s solution of the Poincar conjecture by the Ricci flow method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we write dF to emphasize the similarity with the derivative of a map between Euclidean domains. In later chapters, we shall rather write DF in order to distinguish the derivative of a map from the exterior derivative of a form.

  2. 2.

    Here, we do not explain that concept, but rather refer to [242] or any advanced textbook in integration theory. For the purposes of this book, it suffices to integrate continuous functions. Likewise, we do not need to consider arbitrary measurable subsets, but only open and closed ones.

  3. 3.

    We shall see a deeper geometric interpretation of the computation leading to (1.6.9) in §9.2B below.

  4. 4.

    These estimates are local estimates on the domain, and therefore, we have to make sure that for suitable regions \(\Omega \times (t_{1},t_{2})\) in S 1 × [0, ), the image of u on such a region stays in the same coordinate chart in which we write our Eq. (1.6.4). First of all, since we already have derived a bound on u s , in particular u is uniformly continuous w.r.t. s. As a solution of the heat equation, u is also continuous w.r.t. t so that we may apply the estimates locally in time. The uniform continuity w.r.t. t will be derived shortly.

  5. 5.

    In the bibliography, a superscript will indicate the edition of a monograph. For instance,72017 means 7th edition, 2017.

Bibliography

In the bibliography, a superscript will indicate the edition of a monograph. For instance,72017 means 7th edition, 2017.

  1. V.N. Berestovskij and I.G. Nikolaev. Multidimensional generalized Riemannian spaces. In Y. G. Reshetnyak, editor, Geometry IV, pages 165–243. Encyclopedia Math. Sciences Vol 70, Springer, 1993.

    Google Scholar 

  2. A. Candel and L. Conlon. Foliations I. Oxford Univ. Press, 2000.

    MATH  Google Scholar 

  3. B. Clarke. The metric geometry of the manifold of Riemannian metrics over a closed manifold. Calc.Var., 39:533–545, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Donaldson and P. Kronheimer. The geometry of four-manifolds. Oxford Univ. Press, 1990.

    MATH  Google Scholar 

  5. D. Freed and K. Uhlenbeck. Instantons and 4-manifolds. Springer, 1984.

    Book  MATH  Google Scholar 

  6. C.F. Gauss. Disquisitiones generales circa superficies curvas; in: P.Dombrowski, 150 years after Gauss’ “Disquisitiones generales circa superficies curvas”. Soc. Math. France, 1979.

    Google Scholar 

  7. M. Gromov. Pseudoholomorphic curves in symplectic geometry. Inv. math., 82:307–347, 1985.

    Article  MATH  Google Scholar 

  8. M. Günther. Zum Einbettungssatz von J. Nash. Math. Nachr., 144:165–187, 1989.

    Google Scholar 

  9. M. Günther. Isometric embeddings of Riemannian manifolds. In Proceedings of the International Congress of Mathematicians, volume 2, pages 1137–1143, 1991.

    Google Scholar 

  10. Q. Han and J.X. Hong. Isometric embedding of Riemannian manifolds in Euclidean spaces, volume 130. American Mathematical Society Providence, 2006.

    Book  Google Scholar 

  11. S. Hawking and Ellis. The large scale structure of space–time. Cambridge University Press, 1973.

    Google Scholar 

  12. G. Hector and U. Hirsch. Introduction to the geometry of foliations, Part A. Vieweg, 1986.

    Book  MATH  Google Scholar 

  13. J. Jost. Mathematical concepts. Springer, 2015.

    Book  MATH  Google Scholar 

  14. J. Jost. Postmodern analysis. Springer,32005.

    Google Scholar 

  15. J. Jost and L. Todjihounde. Harmonic nets in metric spaces. Pacific J. Math., 231:437–444, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Kervaire. A manifold which does not admit any differentiable structure. Comment. Math. Helv., 34:257–270, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Klingenberg. Riemannian geometry. de Gruyter,21995.

    Google Scholar 

  18. A. Kriegl and P. Michor. The convenient setting of global analysis, volume 53. American Mathematical Soc., 1997.

    Google Scholar 

  19. N. Kuiper. On C 1-isometric imbeddings, I, II. Indagationes Math., 58:545–556, 683–689, 1955.

    Google Scholar 

  20. P. Michor and D. Mumford. Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc., 8:1–48, 2004.

    MathSciNet  MATH  Google Scholar 

  21. P. Michor and D. Mumford. Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math, 10:217–245, 2005.

    MathSciNet  MATH  Google Scholar 

  22. J. Milnor. On manifolds homeomorphic to the 7-sphere. Ann. Math., 64:399–405, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Milnor. Differentiable structures on spheres. Am. J. Math., 81:962–972, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Moser. A rapidly convergent iteration method and non-linear partial differential equations-I, II. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 20(2):265–315, 499–535, 1966.

    Google Scholar 

  25. J. Nash. C 1-isometric imbeddings. Ann. Math., 60:383–396, 1954.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Nash. The imbedding problem for Riemannian manifolds. Ann. Math., 63:20–63, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  27. I.G. Nikolaev. Synthetic methods in Riemannian geometry. Lecture Notes. Univ. Illinois at Urbana–Champaign, 1992.

    Google Scholar 

  28. G. Ricci and T. Levi-Civita. Méthodes de calcul différentiel absolu et leurs applications. Math. Ann., 54, 1901.

    Google Scholar 

  29. B. Riemann. Über die Hypothesen, welche der Geometrie zugrunde liegen. in [359].

    Google Scholar 

  30. B. Riemann. Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. Edited with a commentary by J.Jost, Klassische Texte der Wissenschaft, Springer, Berlin etc., 2013.

    Google Scholar 

  31. B. Riemann. On the hypotheses which lie at the bases of geometry. Translated by W.K.Clifford, edited with a commentary by J.Jost, Classic Texts in the Sciences, Birkhäuser, 2016.

    Google Scholar 

  32. R. Sachs and H. Wu. General relativity for mathematicians. Springer GTM, 1977.

    Book  MATH  Google Scholar 

  33. W. Thurston. Hyperbolic structures on 3-manifolds. Preprint, 1980.

    Google Scholar 

  34. W. Thurston. Three-dimensional geometry and topology, Vol. 1. Princeton University Press, 1997.

    Google Scholar 

  35. P. Tondeur. Foliations on Riemannian manifolds. Springer, 1988.

    Book  MATH  Google Scholar 

  36. H. Weyl. Die Idee der Riemannschen Fläche. Teubner, Leipzig, Berlin, 1913.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jost, J. (2017). Chapter 1 Riemannian Manifolds. In: Riemannian Geometry and Geometric Analysis. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-61860-9_1

Download citation

Publish with us

Policies and ethics