Skip to main content

Metabolomics Analysis of Pot-Pollen from Three Species of Australian Stingless Bees (Meliponini)

  • Chapter
  • First Online:
Pot-Pollen in Stingless Bee Melittology

Abstract

Pot-pollen from Australian stingless bees (Meliponini) was analysed for volatile organic compounds (VOCs) and secondary metabolites from ethanolic extracts. Samples were harvested from multiple colonies of the species Tetragonula carbonaria (Smith), T. hockingsi (Cockerell) and Austroplebeia australis (Friese) foraging in the same geographic area and season. Comparative analyses were performed by HS-SPME-GC-MS and LC-ESI-HRMS/MS, and statistical variability was assessed by two-way ANOVA and bi-dimensional Principal Component Analysis (PCA). VOCs contain similar mono-sesqui-terpenes across samples, and three VOCs were significantly associated with the pot-pollen of the different bee species: acetic acid was associated with T. hockingsi, p-anisaldehyde with A. australis and a methanone derivative with T. carbonaria. Ethanol extracts of the pot-pollens were not significantly different across bee species and contained glycosyl-flavonoids and phenolics, including traces of secondary metabolites typical of stingless bee propolis. Findings of this work are available as open source interactive data to encourage further collaborative research on pot-pollen of the Australian Meliponini.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Babushok V, Linstrom P, Zenkevich I. 2011. Retention indices for frequently reported compounds of plant essential oils. Journal of Physical and Chemical Reference Data 40: 043101.

    Article  CAS  Google Scholar 

  • Bankova V, Popova M. 2007. Propolis of stingless bees: a promising source of biologically active compounds. Pharmacognosy Review 1: 88–92.

    CAS  Google Scholar 

  • Baroni MV, Nores ML, Díaz MDP, Chiabrando GA, Fassano JP, Costa C, Wunderlin DA. 2006. Determination of volatile organic compound patterns characteristic of five unifloral honey by solid-phase microextraction− gas chromatography− mass spectrometry coupled to chemometrics. Journal of Agricultural and Food Chemistry 54: 7235–7241.

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum MR, Johnson RM. 2015. Xenobiotic detoxification pathways in honey bees. Current Opinion in Insect Science 10: 51–58.

    Article  PubMed  Google Scholar 

  • Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch E. 2007. A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry 103: 1032–1043.

    Article  CAS  Google Scholar 

  • de Rijke E, Out P, Niessen WM, Ariese F, Gooijer C, Udo AT. 2006. Analytical separation and detection methods for flavonoids. Journal of Chromatography A 1112: 31–63.

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt M, Haider M, Dorn S, Müller A. 2014. Pollen mixing in pollen generalist solitary bees: a possible strategy to complement or mitigate unfavourable pollen properties? Journal of Animal Ecology 83: 588–597.

    Article  PubMed  Google Scholar 

  • Gilliam M. 1979. Microbiology of pollen and bee bread: the genus Bacillus. Apidologie 10: 269–274.

    Article  Google Scholar 

  • Griffin CT, Mitrovic SM, Danaher M, Furey A. 2015. Development of a fast isocratic LC-MS/MS method for the high-throughput analysis of pyrrolizidine alkaloids in Australian honey. Food Additives & Contaminants: Part A 32: 214–228.

    Article  CAS  Google Scholar 

  • Halcroft M, Spooner-Hart R, Dollin LA. 2013. Australian stingless bees. pp. 35–72. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer. New York, USA. 654 pp.

    Google Scholar 

  • Heard T. 1988. Propagation of hives of Trigona carbonaria Smith (Hymenoptera: Apidae). Austral Entomology 27: 303–304.

    Article  Google Scholar 

  • Heard TA. 1999. The role of stingless bees in crop pollination. Annual review of entomology 44: 183–206.

    Article  CAS  PubMed  Google Scholar 

  • Heard TA. 2016. The Australian native bee book. Sugarbag Bees. Brisbane. 264 pp.

    Google Scholar 

  • Hockings HJ. 1883. Notes on two Australian species of Trigona. Transactions of the Royal Entomological Society of London XI: 149–157.

    Google Scholar 

  • Klatt BK, Burmeister C, Westphal C, Tscharntke T, von Fragstein M. 2013. Flower volatiles, crop varieties and bee responses. PLoS One 8: e72724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komosinska-Vassev K, Olczyk P, Kaźmierczak J, Mencner L, Olczyk K. 2015. Bee pollen: chemical composition and therapeutic application. Evidence-Based Complementary and Alternative Medicine. Article ID 297425: 1-6.

    Article  Google Scholar 

  • Leonhardt SD, Heard TA, Wallace H. 2014a. Differences in the resource intake of two sympatric Australian stingless bee species. Apidologie 45: 514–527.

    Article  Google Scholar 

  • Leonhardt SD, Kaltenpoth M. 2014b. Microbial communities of three sympatric Australian stingless bee species. PLoS One 9: e105718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonhardt SD, Wallace HM, Schmitt T. 2011. The cuticular profiles of Australian stingless bees are shaped by resin of the eucalypt tree Corymbia torelliana. Austral Ecology 36: 537–543.

    Article  Google Scholar 

  • Lucchetti MA, Glauser G, Kilchenmann V, Dübecke A, Beckh G, Praz C, Kast C. 2016. Pyrrolizidine Alkaloids from Echium vulgare in honey originate primarily from floral nectar. Journal of Agricultural and Food Chemistry 64: 5267–5273.

    Article  CAS  PubMed  Google Scholar 

  • Mărgăoan R, Mărghitaş LA, Dezmirean DS, Dulf FV, Bunea A, Socaci SA, Bobiş O. 2014. Predominant and secondary pollen botanical origins influence the carotenoid and fatty acid profile in fresh honey bee-collected pollen. Journal of Agricultural and Food Chemistry 62: 6306–6316.

    Article  CAS  PubMed  Google Scholar 

  • Massaro C, Katouli M, Grkovic T, Vu H, Quinn RJ, Heard TA, Carvalho C, Manley-Harris M, Wallace H, Brooks P. 2014a. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 95: 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Massaro CF, Shelley D, Heard TA, Brooks P. 2014b. In vitro antibacterial phenolic extracts from ‘sugarbag’pot-honeys of Australian stingless bees (Tetragonula carbonaria). Journal of Agricultural and Food Chemistry 62: 12209–12217.

    Article  CAS  PubMed  Google Scholar 

  • Massaro CF, Smyth TJ, Smyth WF, Heard T, Leonhardt SD, Katouli M, Wallace HM, Brooks P. 2015. Phloroglucinols from anti-microbial deposit-resins of Australian stingless bees (Tetragonula carbonaria). Phytotherapy Research 29: 48–58.

    Article  CAS  PubMed  Google Scholar 

  • Massaro FC, Brooks PR, Wallace HM, Russell FD. 2011. Cerumen of Australian stingless bees (Tetragonula carbonaria): gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties. Naturwissenschaften 98: 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Medina Á, González G, Sáez JM, Mateo R, Jiménez M. 2004. Bee pollen, a substrate that stimulates ochratoxin A production by Aspergillus ochraceus Wilh. Systematic and applied microbiology 27: 261–267.

    Article  CAS  PubMed  Google Scholar 

  • Menezes C, Vollet-Neto A, Contrera FAFL, Venturieri GC, Imperatriz-Fonseca VL. 2013. 153-171 pp. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees.Springer. New York, USA. 654 pp.

    Google Scholar 

  • Milborrow B, Kennedy J, Dollin A. 1987. Composition of wax made by the Australian stingless bee Trigona australis. Australian Journal of Biological Sciences 40: 15–26.

    CAS  Google Scholar 

  • Nishimura E, Murakami S, Suzuki K, Amano K, Tanaka R, Shinada T. 2016. Structure determination of monomeric phloroglucinol derivatives with a cinnamoyl group isolated from propolis of the stingless bee, Tetragonula carbonaria. Asian Journal of Organic Chemistry 5: 855–859.

    Article  CAS  Google Scholar 

  • NIST Standard Reference Database Mass Spectral Library with Search Program. Data Version 2.0, 2011.

    Google Scholar 

  • Nunes CA, Guerreiro MC. 2012. Characterization of Brazilian green propolis throughout the seasons by headspace GC/MS and ESI-MS. Journal of the Science of Food and Agriculture 92: 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen C. 2008. Catalog of the Indo-Malayan/Australasian stingless bees (Hymenoptera: Apidae: Meliponini). Citeseer. Auckland.

    Google Scholar 

  • Rayment T. 1935. A cluster of bees: sixty essays on the life-histories of Australian bees. Endeavour Press; Sydney, Australia. pp 539–551.

    Google Scholar 

  • Rodríguez-Carrasco Y, Font G, Mañes J, Berrada H. 2013. Determination of mycotoxins in bee pollen by gas chromatography–tandem mass spectrometry. Journal of Agricultural and Food Chemistry 61: 1999–2005.

    Article  CAS  PubMed  Google Scholar 

  • Roubik DW. 1979. Nest and colony characteristics of stingless bees from French Guiana (Hymenoptera: Apidae). Journal of the Kansas entomological Society 52: 443–470.

    Google Scholar 

  • Rzepecka-Stojko A, Stojko J, Kurek-Górecka A, Górecki M, Kabała-Dzik A, Kubina R, Moździerz A, Buszman E. 2015. Polyphenols from bee pollen: structure, absorption, metabolism and biological activity. Molecules 20: 21732–21749.

    Article  CAS  PubMed  Google Scholar 

  • Smith JP, Heard TA, Beekman, M., Gloag, R. 2017. Flight range of the Australian stingless bee Tetragonula carbonaria (Hymenoptera: Apidae). Austral Entomology 56: 50–53.

    Article  Google Scholar 

  • Somerville D, Nicol H. 2006. Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity. Animal Production Science 46: 141–149.

    Article  CAS  Google Scholar 

  • Tomás-Barberán FA, Tomás-Lorente F, Ferreres F, Garcia-Viguera C. 1989 Flavonoids as biochemical markers of the plant origin of bee pollen. Journal of the Science of Food and Agriculture 47: 337–40.

    Article  Google Scholar 

  • Truchado P, Vit P, Heard TA, Tomás-Barberán FA, Ferreres F. 2015. Determination of interglycosidic linkages in O-glycosyl flavones by high-performance liquid chromatography/photodiode-array detection coupled to electrospray ionization ion trap mass spectrometry. Its application to Tetragonula carbonaria honey from Australia. Rapid Communications in Mass Spectrometry 29: 948–954.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The pot-pollen samples were freshly collected from local stingless bee hives and kindly donated by Mr. Robert Luttrell, Highvale, Queensland, Australia. The data reported in this paper were obtained at the Central Analytical Research Facility (CARF) operated by the Institute for Future Environments at Queensland University of Technology. We are thankful to David Marshall at CARF for technical support during the LC-MS analyses and to Fabio Borello for helping with XCMS-PCA analysis. Useful editorial annotations by P. Vit and D.W. Roubik are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelina Flavia Massaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flavia Massaro, C., Villa, T.F., Hauxwell, C. (2018). Metabolomics Analysis of Pot-Pollen from Three Species of Australian Stingless Bees (Meliponini). In: Vit, P., Pedro, S., Roubik, D. (eds) Pot-Pollen in Stingless Bee Melittology. Springer, Cham. https://doi.org/10.1007/978-3-319-61839-5_29

Download citation

Publish with us

Policies and ethics