Skip to main content

The Pole (Germ) Plasm in Insect Oocytes

  • Chapter
  • First Online:
Book cover Oocytes

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 63))

Abstract

Animal germline cells are specified either through zygotic induction or cytoplasmic inheritance. Zygotic induction takes place in mid- or late embryogenesis and requires cell-to-cell signaling leading to the acquisition of germline fate de novo. In contrast, cytoplasmic inheritance involves formation of a specific, asymmetrically localized oocyte region, termed the germ (pole) plasm. This region contains maternally provided germline determinants (mRNAs, proteins) that are capable of inducing germline fate in a subset of embryonic cells. Recent data indicate that among insects, the zygotic induction represents an ancestral condition, while the cytoplasmic inheritance evolved at the base of Holometabola or in the last common ancestor of Holometabola and its sister taxon, Paraneoptera.

In this chapter, we first describe subsequent stages of morphogenesis of the pole plasm and polar granules in the model organism, Drosophila melanogaster. Then, we present an overview of morphology and cytoarchitecture of the pole plasm in various holometabolan and paraneopteran insect species. Finally, we focus on phylogenetic hypotheses explaining the known distribution of two different strategies of germline specification among insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando H (1973) Old oocytes and newly laid eggs of scorpion-flies and hanging-flies (Mecoptera: Panorpidae and Bittacidae). Sci Rep Tokyo Kyoiku Daigaku Ser B 15:163–187

    Google Scholar 

  • Anne J (2010) Targeting and anchoring Tudor in the pole plasm of the Drosophila oocyte. PLoS One 5(12):e14362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkov AL, Ramos A (2010) Building RNA-protein granules: insight from the germline. Trends Cell Biol 20:482–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkov AL, Wang JY, Ramos A, Lehmann R (2006) The role of Tudor domains in germline development and polar granule architecture. Development 133:4053–4062

    Article  CAS  PubMed  Google Scholar 

  • Barckmann B, Pierson S, Dufourt J, Papin C, Armenise C, Port F, Grentzinger T, Chambeyron S, Baronian G, Desvignes JP, Curk T, Simonelig M (2015) Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo. Cell Rep 12:1205–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastock R, St Johnston D (2008) Drosophila oogenesis. Curr Biol 18:1082–1087

    Article  CAS  Google Scholar 

  • Becalska AN, Gavis ER (2009) Lighting up mRNA localization in Drosophila oogenesis. Development 136:2493–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becalska AN, Kim YR, Belletier NG, Lerit DA, Sinsimer KS, Gavis ER (2011) Aubergine is a component of a nanos mRNA localization complex. Dev Biol 349:46–52

    Article  CAS  PubMed  Google Scholar 

  • Benton MA, Kenny NJ, Conrads KH, Roth S, Lynch JA (2016) Deep, staged transcriptomic resources for the novel coleopteran models Atrachya menetriesi and Callosobruchus maculatus. bioRxiv. doi:10.1101/035998

  • Berg GJ, Gassner G (1978) Fine structure of the blastoderm embryo in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). Int J Insect Morphol Embryol 7:81–105

    Article  Google Scholar 

  • Besse F, Lopez de Quinto S, Marchand V, Trucco A, Ephrussi A (2009) Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation. Genes Dev 23:195–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilinski SM (1991) Morphological markers of anteroposterior and dorsoventral polarity in developing oocytes of the hymenopteran Cosmoconus meridionator (Ichneumonidae). Roux Arch Dev Biol 200:330–335

    Article  PubMed  Google Scholar 

  • Bilinski SM (1998) Introductory remarks. Folia Histochem Cytobiol 36:143–145

    CAS  PubMed  Google Scholar 

  • Bilinski SM, Büning J, Simiczyjew B (1998) The ovaries of Mecoptera: basic similarities and one exception to the rule. Folia Histochem Cytobiol 36:189–195

    CAS  PubMed  Google Scholar 

  • Brandt A (1874) Ueber die Eiroehren der Blatta orientalis (Periplaneta). Mem Acad Imp Sci 21:1–30

    Google Scholar 

  • Breitwieser W, Markussen FH, Horstmann H, Ephrussi A (1996) Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev 10:2179–2188

    Article  CAS  PubMed  Google Scholar 

  • Bullock SL, Ish-Horowicz D (2001) Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature 414:611–616

    Article  CAS  PubMed  Google Scholar 

  • Büning J (1993) Germ cell cluster formation in insect oocytes. Int J Insect Morphol Embryol 22:237–253

    Article  Google Scholar 

  • Büning J (1994) The insect ovary. Ultrastructure, previtellogenic growth and evolution. Chapman & Hall, London

    Google Scholar 

  • Cavaliere V, Taddei C, Gargiulo G (1998) Apoptosis of nurse cells at the late stages of oogenesis of Drosophila melanogaster. Dev Genes Evol 208:106–112

    Article  CAS  PubMed  Google Scholar 

  • Chang JS, Tan L, Schedl P (1999) The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev Biol 215:91–106

    Article  CAS  PubMed  Google Scholar 

  • Chekulaeva M, Hentze MW, Ephrussi A (2006) Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles. Cell 124:521–533

    Article  CAS  PubMed  Google Scholar 

  • Clark A, Meignin C, Davis I (2007) A dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte. Development 134:1955–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalby B, Glover DM (1992) 3′non-translated sequences in Drosophila cyclin B transcripts direct posterior pole accumulation late in oogenesis and peri-nuclear association in syncytial embryos. Development 115:989–997

    CAS  PubMed  Google Scholar 

  • de Cuevas M, Lilly M, Spradling AC (1997) Germline cyst formation in Drosophila. Annu Rev Genet 31:405–428

    Article  PubMed  Google Scholar 

  • Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392

    Article  CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Srouji JR, Schwager EE, Extavour CG (2012) oskar predates the evolution of germ plasm in insects. Curr Biol 22:2278–2283

    Article  CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Donoughe S, Clarke DN, Extavour CG (2013) Germ cell specification requires mechanisms rather than germ plasm in a basally branching insect. Curr Biol 23:835–842

    Article  CAS  PubMed  Google Scholar 

  • Extavour CG (2007) Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integr Comp Biol 47:770–785

    Article  PubMed  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  CAS  PubMed  Google Scholar 

  • Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Frise E, Hammonds AS, Celniker SE (2010) Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape. Mol Syst Biol 6:345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao M, Arkov AL (2013) Next generation organelles: structure and role of germ granules in the germline. Mol Reprod Dev 80:610–623

    Article  CAS  PubMed  Google Scholar 

  • Gavis ER, Lehmann R (1994) Translational regulation of nanos by RNA localization. Nature 369:315–318

    Article  CAS  PubMed  Google Scholar 

  • Goss RJ (1952) The early embryology of the book louse, Liposcelis divergens Badonnel (Psocoptera; Liposcelidae). J Morphol 91:135–167

    Article  Google Scholar 

  • Gottanka J, Büning J (1990) Oocytes develop from interconnected cystocytes in the panoistic ovaries of Nemoura sp. (Pictet) (Plecoptera: Nemouridae). Int J Insect Morphol Embryol 19:219–225

    Article  Google Scholar 

  • Gutzeit HO (1985) Oosome formation during in vitro oogenesis in Bradysia tritici (syn. Sciara ocellaris). Roux Arch Dev Biol 195:173–181

    Article  Google Scholar 

  • Hachet O, Ephrussi A (2004) Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428:959–963

    Article  CAS  PubMed  Google Scholar 

  • Harris AN, Macdonald PM (2001) Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128:2823–2832

    CAS  PubMed  Google Scholar 

  • Hay B, Jan LY, Jan YN (1988) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55:577–587

    Article  CAS  PubMed  Google Scholar 

  • Hay B, Jan LY, Jan YN (1990) Localization of Vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Development 109:425–433

    CAS  PubMed  Google Scholar 

  • Heming BS (1979) Origin and fate of germ cells in male and female embryos of Haplothrips verbasci (Osborn) (Insecta, Thysanoptera, Phlaeothripidae). J Morphol 160:323–344

    Article  Google Scholar 

  • Henning W (1981) Insect phylogeny. Wiley, Chichester

    Google Scholar 

  • Jaglarz MK, Kloc M, Jankowska W, Szymanska B, Bilinski SM (2011) Nuage morphogenesis becomes more complex: two translocation pathways and two forms of nuage coexist in Drosophila germline syncytia. Cell Tissue Res 344:169–181

    Article  PubMed  Google Scholar 

  • Jambor H, Surendranath V, Kalinka AT, Mejstrik P, Saalfeld S, Tomancak P (2015) Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. eLife 4:e05003

    Article  PubMed Central  Google Scholar 

  • Jeske M, Bordi M, Glatt S, Müller S, Rybin V, Müller CW, Ephrussi A (2015) The crystal structure of the Drosophila germline inducer Oskar identifies two domains with distinct Vasa helicase- and RNA-binding activities. Cell Rep 12:587–598

    Article  CAS  PubMed  Google Scholar 

  • Jones JR, Macdonald PM (2007) Oskar controls morphology of polar granules and nuclear bodies in Drosophila. Development 134:233–236

    Article  CAS  PubMed  Google Scholar 

  • Juhn J, James AA (2006) oskar gene expression in the vector mosquitoes Anopheles gambiae and Aedes aegypti. Insect Mol Biol 15:363–372

    Article  CAS  PubMed  Google Scholar 

  • Juhn J, Marinotti O, Calvo E, James AA (2008) Gene structure and expression of nanos (nos) and oskar (osk) orthologues of the vector mosquito, Culex quinquefasciatus. Insect Mol Biol 17:545–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim G, Pai C-I, Sato K, Person MD, Nakamura A, Macdonald PM (2015) Region-specific activation of oskar mRNA translation by inhibition of Bruno-mediated repression. PLoS Genet 11:e1004992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim-Ha J, Kerr K, Macdonald PM (1995) Translational regulation of oskar mRNA by Bruno, an ovarian RNA-binding protein, is essential. Cell 81:403–412

    Article  CAS  PubMed  Google Scholar 

  • King RC (1970) Ovarian development in Drosophila melanogaster. Academic, New York

    Google Scholar 

  • Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11:652–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirino Y, Vourekas A, Sayed N, de Lima Alves F, Thomson T, Lasko P, Rappsilber J, Jongens TA, Mourelatos Z (2010) Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16:70–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klag J, Bilinski S (1993) Oosome formation in two ichneumonid wasps. Tissue Cell 25:121–128

    Article  CAS  PubMed  Google Scholar 

  • Klag J, Bilinski S (1994) Germ cell cluster formation and oogenesis in the hymenopteran Coleocentrotus soldanskii. Tissue Cell 26:699–706

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Jedrzejowska I, Tworzydlo W, Bilinski SM (2014) Balbiani body, nuage and sponge bodies – the germ plasm pathway players. Arthropod Struct Dev 43:341–348

    Article  PubMed  Google Scholar 

  • Kristensen NP (1981) Phylogeny of insect orders. Annu Rev Entomol 26:135–157

    Article  Google Scholar 

  • Kristensen NP (1995) Forty years’ insect phylogenetic systematics. Zool Beitr N F 36:83–124

    Google Scholar 

  • Kubrakiewicz J (1997) Germ cells cluster organization in polytrophic ovaries of Neuroptera. Tissue Cell 29:221–228

    Article  CAS  PubMed  Google Scholar 

  • Kugler J-M, Lasko P (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly 3:15–28

    Article  CAS  PubMed  Google Scholar 

  • Lasko PF, Ashburner M (1990) Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev 4:905–921

    Article  CAS  PubMed  Google Scholar 

  • Le Hir H, Gatfield D, Braun IC, Forler D, Izaurralde E (2001) The protein Mago provides a link between splicing and mRNA localization. EMBO Rep 2:1119–1124

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187

    Article  CAS  PubMed  Google Scholar 

  • Lehmann R (2016) Germ plasm biogenesis – an oskar-centric perspective. Curr Top Dev Biol 116:679–707

    Article  PubMed  PubMed Central  Google Scholar 

  • Lerit DA, Gavis ER (2011) Transport of germ plasm on astral microtubules directs germ cell development in Drosophila. Curr Biol 21:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim AK, Tao L, Kai T (2009) piRNAs mediate posttranscriptional retroelement silencing and localization to pi-bodies in the Drosophila germline. J Cell Biol 186:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin GW, Cook CE, Miura T, Chang CC (2014) Posterior localization of ApVas1 positions the preformed germ plasm in the sexual oviparous pea aphid Acyrthosiphon pisum. EvoDevo 5:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Little SC, Sinsimer KS, Lee JJ, Wieschaus EF, Gavis ER (2015) Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat Cell Biol 17:558–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JL, Gall JG (2007) U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci 104:11655–11659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wang JY, Huang Y, Li Z, Gong W, Lehmann R, RM X (2010) Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes Dev 24:1876–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JA, Ozüak O, Khila A, Abouheif E, Desplan C, Roth S (2011) The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the Holometabola. PLoS Genet 7:e1002029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan-Miklos S, Cooley L (1994) Intercellular cytoplasm transport during Drosophila oogenesis. Dev Biol 165:336–351

    Article  CAS  PubMed  Google Scholar 

  • Mahowald AP (2001) Assembly of the Drosophila germ plasm. Int Rev Cytol 203:187–213

    Article  CAS  PubMed  Google Scholar 

  • Mahowald AP, Stoiber D (1974) The origin of the nurse chamber in ovaries of Miastor (Diptera: Cecidomyiidae). Roux Archiv 176:159–166

    Article  Google Scholar 

  • Mani SR, Juliano CE (2013) Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 80:632–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markussen FH, Michon AM, Breitwieser W, Ephrussi A (1995) Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121:3723–3732

    CAS  PubMed  Google Scholar 

  • Meng C (1968) Strukturwandel und histochemische Befunde insbesondere am Ooson während der Oogenese und nach der Ablage des Eies von Pimpla turrionallae L. (Hymenoptera, Ichneumonidae). Roux Arch Dev Biol 161:162–208

    Article  Google Scholar 

  • Morais-de-Sá E, Vega-Rioja A, Trovisco V, St Johnston D (2013) Oskar is targeted for degradation by the sequential action of Par-1, GSK-3, and the SCF(-Slimb) ubiquitin ligase. Dev Cell 26:303–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura A, Amikura R, Mukai M, Kobayashi S, Lasko P (1996) Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science 274:2075–2079

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Sato K, Hanyu-Nakamura K (2004) Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell 6:69–78

    Article  CAS  PubMed  Google Scholar 

  • Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H et al (2009) Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 28:3820–3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios IM, St Johnston D (2002) Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 129:5473–5485

    Article  CAS  PubMed  Google Scholar 

  • Pritsch M, Büning J (1989) Germ cell clusters in panoistic ovary of Thysanoptera (Insecta). Zoomorphology 108:309–313

    Article  Google Scholar 

  • Pyka-Fosciak G, Szklarzewicz T (2008) Germ cell cluster formation and ovariole structure in viviparous and oviparous generations of the aphid Stomaphis quercus. Int J Dev Biol 52:259–265

    Article  PubMed  Google Scholar 

  • Quan H, Lynch J (2016) The evolution of insect germline specification strategies. Curr Opin Insect Sci 13:99–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramamurty PS (1964) Distribution of RNA in the ooplasm of the scorpion fly. Sci Cult 30:459–461

    CAS  Google Scholar 

  • Rangan P, DeGennaro M, Jaime-Bustamante K, Coux RX, Martinho RG, Lehmann R (2009) Temporal and spatial control of germ-plasm RNAs. Curr Biol 19:72–77

    Article  CAS  PubMed  Google Scholar 

  • Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R et al (2006) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  CAS  Google Scholar 

  • Rongo C, Gavis ER, Lehmann R (1995) Localization of oskar RNA regulates oskar translation and requires Oskar protein. Development 121:2737–2746

    CAS  PubMed  Google Scholar 

  • Roth S, Lynch JA (2009) Symmetry breaking during Drosophila oogenesis. Cold Spring Harb Perspect Biol 1:a001891

    Article  PubMed  PubMed Central  Google Scholar 

  • Simiczyjew B, Margas W (2001) Ovary structure in the bat flea Ischnopsyllus spp. (Siphonaptera: Ischnopsyllidae). Phylogenetic implications. Zool Pol 46:5–14

    Google Scholar 

  • Sinsimer KS, Jain RA, Chatterjee S, Gavis ER (2011) A late phase of germ plasm accumulation during Drosophila oogenesis requires Lost and Rumpelstiltskin. Development 138:3431–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinsimer KS, Lee JJ, Thiberge SY, Gavis ER (2013) Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Rep 5:1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smibert CA, Wilson JE, Kerr K, Macdonald PM (1996) Smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev 10:2600–2609

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Wilson JE, Macdonald PM (1992) Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell 70:849–859

    Article  CAS  PubMed  Google Scholar 

  • Stys P, Bilinski S (1990) Ovariole types and phylogeny of hexapods. Biol Rev 65:401–429

    Article  Google Scholar 

  • Suzuki N, Shimizu S, Ando H (1981) Early embryology of the alderfly, Sialis mitsuhashii okamoto. Int J Insect Morphol Embryol 10:409–418

    Article  Google Scholar 

  • Thomson T, Lasko P (2004) Drosophila tudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning. Genesis 40:164–170

    Article  CAS  PubMed  Google Scholar 

  • Thomson T, Lasko P (2005) Tudor and its domains: germ cell formation from a Tudor perspective. Cell Res 15:281–291

    Article  CAS  PubMed  Google Scholar 

  • Thomson T, Liu N, Arkov A, Lehmann R, Lasko P (2008) Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mech Dev 125:865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trcek T, Grosch M, York A, Shroff H, Lionnet T, Lehmnann R (2015) Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat Commun 6:7962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tworzydlo W, Bilinski SM (2008) Structure of ovaries and oogenesis in dermapterans. I. Origin and functioning of the ovarian follicles. Arthropod Struct Dev 37:310–320

    Article  PubMed  Google Scholar 

  • Tworzydlo W, Bilinski SM, Kočárek P, Haas F (2010) Ovaries and germline cysts and their evolution in Dermaptera (Insecta). Arthropod Struct Dev 39:360–368

    Article  PubMed  Google Scholar 

  • Vanzo NF, Ephrussi A (2002) Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development 129:3705–3714

    CAS  PubMed  Google Scholar 

  • Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I (2011) RNA granules in germ cells. Cold Spring Harb Perspect Biol 3:a002774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vourekas A, Alexiou P, Vrettos N, Maragkakis M, Mourelatos Z (2016) Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm. Nature 531:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Lehmann R (1991) Nanos is the localized posterior determinant in Drosophila. Cell 66:637–647

    Article  CAS  PubMed  Google Scholar 

  • Wienstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD et al (2006) Insight into social insects from the genome of the honeybee, Apis mellifera. Nature 443:931–949

    Article  CAS  Google Scholar 

  • Wilson JE, Connell JE, Macdonald PM (1996) aubergine enhances oskar translation in the Drosophila ovary. Development 122:1631–1639

    CAS  PubMed  Google Scholar 

  • Xia QY, Zhou ZY, Lu C, Cheng DJ, Dai FY et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1837–1940

    Google Scholar 

  • Yang N, Yu Z, Hu M, Wang M, Lehmann R, Xu RM (2015) Structure of Drosophila Oskar reveals a novel RNA binding protein. Proc Natl Acad Sci USA 112:11541–11546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaessinger S, Busseau I, Simonelig M (2006) Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133:4573–4583

    Article  CAS  PubMed  Google Scholar 

  • Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I et al (2008) In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zissler D, Sander K (1982) The cytoplasmic architecture of the insect egg cell. In: King RC, Akai H (eds) Insect ultrastructure. Plenum Publishing, New York

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Bozena Simiczyjew (Institute of Experimental Biology, Wroclaw University) for providing fixed Panorpa ovarian follicles. We also thank Ms. E. Kisiel and A. Jankowska for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szczepan M. Bilinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bilinski, S.M., Jaglarz, M.K., Tworzydlo, W. (2017). The Pole (Germ) Plasm in Insect Oocytes. In: Kloc, M. (eds) Oocytes. Results and Problems in Cell Differentiation, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-60855-6_5

Download citation

Publish with us

Policies and ethics