Skip to main content

Organic Afterglow Phosphors

  • Chapter
  • First Online:
Long Afterglow Phosphorescent Materials

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 1847 Accesses

Abstract

Compared to inorganic materials, organic optoelectronic counterparts of carbon-based small molecules or polymers prepared by various organic and polymeric synthetic methods hold important and advisable features including reduced manufacturing costs, versatility of molecular structures and properties, and compatibility with a vast range of substrates from transparent glass to flexible polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostroverkhova, O.: Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 116, 13279 (2016)

    Article  Google Scholar 

  2. Wang, K., Liu, C., Meng, T., Yi, C., Gong, X.: Inverted organic photovoltaic cells. Chem. Soc. Rev. 45, 2937 (2016)

    Article  Google Scholar 

  3. Kim, S., Kwon, H.J., Lee, S., Shim, H., Chun, Y., Choi, W., Kwack, J., Han, D., Song, M., Kim, S., Mohammadi, S., Kee, I., Lee, S.Y.: Low-power flexible organic light-emitting diode display device. Adv. Mater. 23, 3511 (2011)

    Article  Google Scholar 

  4. Tao, Y., Xu, L., Zhang, Z., Chen, R., Li, H., Xu, H., Zheng, C., Huang, W.: Achieving optimal self-Adaptivity for dynamic tuning of organic semiconductors through resonance engineering. J. Am. Chem. Soc. 138, 9655 (2016)

    Article  Google Scholar 

  5. Tao, Y., Guo, X., Hao, L., Chen, R., Li, H., Chen, Y., Zhang, X., Lai, W., Huang, W.: A solution-processed resonance host for highly efficient Electrophosphorescent devices with extremely low efficiency roll-off. Adv. Mater. 27, 6939 (2015)

    Article  Google Scholar 

  6. Lower, S.K., EI-Sayed, M.A.: The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 66, 199 (1966)

    Article  Google Scholar 

  7. Horie, K., Mita, I.: Photochemistry in polymer solids. Decay of benzophenone phosphorescence in poly(methyl methacrylate). Chem. Phys. Lett. 93, 61 (1982)

    Article  Google Scholar 

  8. Horie, K., et al.: Photochemistry in polymer solids. 3. Kinetics for Nonexponential decay of benzophenone phosphorescence in acrylic and Methacrylic polymers. Macromolecules. 17, 1746 (1984)

    Article  Google Scholar 

  9. Xu, S., et al.: Excited state modulation for organic afterglow: materials and applications. Adv. Mater. 28, 9920 (2016)

    Article  Google Scholar 

  10. Shoji, Y., Ikabata, Y., Wang, Q., Nemoto, D., Sakamoto, A., Tanaka, N., Seino, J., Nakai, H., Fukushima, T.: Unveiling a new aspect of simple Arylboronic esters: long-lived room-temperature phosphorescence from the heavy Atom-free molecules. J. Am. Chem. Soc. 139, 2728 (2017)

    Article  Google Scholar 

  11. Mieno, H., et al.: Long-lived room-temperature phosphorescence of Coronene in Zeolitic Imidazolate framework ZIF-8. Adv. Opt. Mater. 4, 1015 (2016)

    Article  Google Scholar 

  12. An, Z., et al.: Stabilizing triplet excited states for Ultralong organic phosphorescence. Nat. Mater. 14, 685 (2015)

    Article  Google Scholar 

  13. Yuan, J., et al.: Purely organic optoelectronic materials with ultralong-lived excited states under ambient conditions. Chn. Sci. Bull. 60, 1631 (2015)

    Article  Google Scholar 

  14. Qin, X., et al.: Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117, 4488 (2017)

    Article  Google Scholar 

  15. Baldo, M.A., et al.: Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B. 60, 14422 (1999)

    Article  Google Scholar 

  16. Kasha, M.: Phosphorescence and the role of the triplet state in the electronic excitation of complex molecules. Chem. Rev. 41, 401 (1947)

    Article  Google Scholar 

  17. Chen, R.F., et al.: Fluorescence decay times: proteins, coenzymes, and other compounds in water. Science. 156, 949 (1967)

    Article  Google Scholar 

  18. Huang, W., et al.: Organic Electronics. Science Press, China (2011)

    Google Scholar 

  19. Kenkre, V.M., et al.: Effect of transport coherence on trapping-quantum-yield calculations for excitons in molecular-crystals. Phys. Rev. B. 23, 3748 (1981)

    Article  Google Scholar 

  20. Butler, W.L., et al.: Lifetime of the long-wavelength chlorophyll fluorescence. Biochim. Biophys. Acta. 66, 72 (1963)

    Article  Google Scholar 

  21. El-Sayed, M.A., et al.: Intramolecular heavy-Atom effect on the polarization of naphthalene phosphorescence. J. Chem. Phys. 39, 1899 (1963)

    Article  Google Scholar 

  22. Adachi, C., et al.: Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048 (2001)

    Article  Google Scholar 

  23. Ma, Y.G., et al.: Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes. Synth. Met. 94, 245 (1998)

    Article  Google Scholar 

  24. Baldo, M.A., et al.: Highly efficient phosphorescent emission from organic electroluminescent devices. Nature. 395, 151 (1998)

    Article  Google Scholar 

  25. Endo, A., et al.: Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light-emitting diodes-a novel mechanism for electroluminescence. Adv. Mater. 21, 4802 (2009)

    Article  Google Scholar 

  26. Tao, Y., et al.: Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 26, 7931 (2014)

    Article  Google Scholar 

  27. Endo, A., et al.: Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 83302 (2011)

    Article  Google Scholar 

  28. Goushi, K., et al.: Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photon. 6, 253 (2012)

    Article  Google Scholar 

  29. Yang, Z., et al.: Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915 (2017)

    Article  Google Scholar 

  30. Li, W., et al.: Employing similar to 100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and ChargeTransfer excited state. Adv. Funct. Mater. 24, 1609 (2014)

    Article  Google Scholar 

  31. Pan, Y., et al.: High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons. Adv. Opt. Mater. 2, 510 (2014)

    Article  Google Scholar 

  32. Krishna, V.G.: Delayed fluorescence due to triplet-triplet annihilation: a theoretical study. J. Chem. Phys. 46, 1735 (1967)

    Article  Google Scholar 

  33. Parker, C.A., et al.: Delayed fluorescence from solutions of anthracene and phenanthrene. Proc. R. Soc. A. 269, 574 (1962)

    Article  Google Scholar 

  34. Hirata, S., et al.: Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater. 23, 3386 (2013)

    Article  Google Scholar 

  35. Kuno, S., et al.: Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism. Phys. Chem. Chem. Phys. 17, 15989 (2015)

    Article  Google Scholar 

  36. Palner, M., et al.: Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Edit. 54, 11477 (2015)

    Article  Google Scholar 

  37. Dong, X., et al.: Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. J. Mater. Chem. C. 3, 2798 (2015)

    Article  Google Scholar 

  38. Deng, Y., et al.: Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 49, 5751 (2013)

    Article  Google Scholar 

  39. Yuan, W.Z., et al.: Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C. 114, 6090 (2010)

    Article  Google Scholar 

  40. Hong, Y., et al.: Aggregation-induced emission. Chem. Soc. Rev. 40, 5361 (2011)

    Article  Google Scholar 

  41. Yang, Z., et al.: Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew. Chem. Int. Edit. 55, 2181 (2016)

    Article  Google Scholar 

  42. Gong, Y., et al.: Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic Luminogens. Adv. Mater. 27, 6195 (2015)

    Article  Google Scholar 

  43. Li, C., et al.: Reversible luminescence switching of an organic solid: controllable on-off persistent room temperature phosphorescence and stimulated multiple fluorescence conversion. Adv. Opt. Mater. 3, 1184 (2015)

    Article  Google Scholar 

  44. Xue, P., et al.: Luminescence switching of a persistent room-temperature phosphorescent pure organic molecule in response to external stimuli. Chem. Commun. 51, 10381 (2015)

    Article  Google Scholar 

  45. Xue, P., et al.: Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect. Chem. Sci. (2016). doi:10.1039/C5SC03739E

  46. Xie, Y., Ge, Y., Peng, Q., Li, C., Li, Q., Li, Z.: How the molecular packing affects the room temperature phosphorescence in pure organic compounds: ingenious molecular design, detailed crystal analysis, and rational theoretical calculations. Adv. Mater. (2017). doi:10.1002/adma.201606829

  47. Kuno, S., et al.: Long persistent phosphorescence of crystalline phenylboronic acid derivatives: photophysics and a mechanistic study. ChemPhotoChem. 1, 102 (2017)

    Article  Google Scholar 

  48. Hirata, S., et al.: Large reverse saturable absorption under weak continuous incoherent light. Nat. Mater. 13, 938 (2014)

    Article  Google Scholar 

  49. Katsurada, Y., et al.: Photoreversible on-off recording of persistent room-temperature phosphorescence. Adv. Opt. Mater. 3, 1726 (2015)

    Article  Google Scholar 

  50. Hirata, S., et al.: Circularly polarized persistent room-temperature phosphorescence from metal-free chiral aromatics in air. J. Phys. Chem. Lett. 7, 1539 (2016)

    Article  Google Scholar 

  51. Kabe, R., et al.: Afterglow organic light-emitting diode. Adv. Mater. 28, 655 (2016)

    Article  Google Scholar 

  52. Chen, X., et al.: Versatile room-temperature-phosphorescent materials prepared from N-substituted Naphthalimides: Emission enhancement and chemical conjugation. Angew. Chem. Int. Edit. 55, 9872 (2016)

    Article  Google Scholar 

  53. Zhang, G., et al.: Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 129, 8942 (2007)

    Article  Google Scholar 

  54. Samonina-Kosicka, J., et al.: Dual-emissive difluoroboron naphthyl-phenyl beta-diketonate polylactide materials: effects of heavy atom placement and polymer molecular weight. Macromolecules. 47, 3736 (2014)

    Article  Google Scholar 

  55. DeRosa, C.A., et al.: Oxygen sensing difluoroboron dinaphthoylmethane polylactide. Macromolecules. 48, 2967 (2015)

    Article  Google Scholar 

  56. Zhang, G., et al.: Difluoroboron dibenzoylmethane PCL-PLA block copolymers: matrix effects on room temperature phosphorescence. Macromolecules. 42, 3162 (2009)

    Article  Google Scholar 

  57. Al-Attar, H.A., et al.: Room-temperature phosphorescence from films of isolated water-soluble conjugated polymers in hydrogen-bonded matrices. Adv. Funct. Mater. 22, 3824 (2012)

    Article  Google Scholar 

  58. Deng, J., et al.: Electrochemical synthesis of carbon Nanodots directly from alcohols. Chem-Eur. J. 20, 4993 (2014)

    Article  Google Scholar 

  59. Zhou, L., et al.: Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem. Commun. 48, 1147 (2012)

    Article  Google Scholar 

  60. Zhang, Y., et al.: Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe3+ ions. RSC Adv. 3, 3733 (2013)

    Article  Google Scholar 

  61. Sun, Y.P., et al.: Quantum-sized carbon Dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756 (2006)

    Article  Google Scholar 

  62. Li, Q., et al.: Efficient room-temperature phosphorescence from nitrogen-doped carbon Dots in composite matrices. Chem. Mater. 28, 8221 (2016)

    Article  Google Scholar 

  63. Jiang, K., et al.: Triple-mode Emission of carbon Dots: applications for advanced Anti-counterfeiting. Angew. Chem. Int. Edit. 55, 7231 (2016)

    Article  Google Scholar 

  64. Tan, J., et al.: Synthesis of amphiphilic carbon quantum Dots with phosphorescence properties and their multifunctional applications. J. Mater. Chem. C. 4, 10146 (2016)

    Article  Google Scholar 

  65. Yang, X., et al.: Strongly enhanced long-lived persistent room temperature phosphorescence based on the formation of metal–organic hybrids. Adv. Opt. Mater. 4, 897 (2016)

    Article  Google Scholar 

  66. Yang, X., Yan, D.: Long-afterglow metal-organic frameworks: reversible guest-induced phosphorescence tunability. Chem. Sci. 7, 4519 (2016)

    Article  Google Scholar 

  67. Zhang, X., et al.: General design strategy for aromatic ketone-based single-component dual-emissive materials. ACS Appl. Mater. Int. 6, 2279 (2014)

    Article  Google Scholar 

  68. Kolpaczynska, M., et al.: Thienyl difluoroboron beta-diketonates in solution and polylactide media. Aust. J. Chem. 69, 537 (2016)

    Article  Google Scholar 

  69. Gather, M.C., et al.: White organic light-emitting diodes. Adv. Mater. 23, 233 (2011)

    Article  Google Scholar 

  70. Xu, H., et al.: Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 43, 3259 (2014)

    Article  Google Scholar 

  71. Tao, Y., et al.: Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 40, 2943 (2011)

    Article  Google Scholar 

  72. Kim, J.H., et al.: Bright red-emitting electrophosphorescent device using osmium complex as a triplet emitter. Appl. Phys. Lett. 83, 776 (2003)

    Article  Google Scholar 

  73. Gong, Y., et al.: Crystallization-induced dual emission from metal-and heavy atom-free aromatic acids and esters. Chem. Sci. 6, 4438 (2015)

    Article  Google Scholar 

  74. Hirata, S., et al.: Reversible thermal recording media using time-dependent persistent room temperature phosphorescence. Adv. Opt. Mater. 1, 438 (2013)

    Article  Google Scholar 

  75. Hirata, S., Vacha, M.: White afterglow room-temperature emission from an isolated single aromatic unit under ambient condition. Adv. Opt. Mater. 5, 1600996 (2017)

    Article  Google Scholar 

  76. Yang, Y., et al.: Ultralong persistent room temperature phosphorescence of metal coordination polymers exhibiting reversible pH-responsive emission. ACS Appl. Mater. Int. 8, 15489 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Wu, S., Pan, Z., Chen, R., Liu, X. (2017). Organic Afterglow Phosphors. In: Long Afterglow Phosphorescent Materials. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-60421-3_5

Download citation

Publish with us

Policies and ethics