Skip to main content

Origin and Management of Radioactive Substances in the Marine Environment

  • Chapter
  • First Online:
Handbook on Marine Environment Protection

Abstract

Artificial radioactive substances have been introduced into the marine environment by various human activities since the beginning of the nuclear age in the 1940ties. Sources are atmospheric nuclear weapon tests, dumping of radioactive wastes, authorised discharges from the nuclear industry, as well as accidental releases, such as the Windscale fire in 1957, the accident at Chernobyl in 1986, and Fukushima Daiichi in 2011. Military activities and losses of nuclear submarines are also an important input of radioactive material to the marine environment. The following chapter will give a short introduction to some of the most relevant sources and discuss the radiological consequences to biota and man. It will also give a brief overview of pertinent management measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The term radiocesium means mostly Cs-134 and Cs-137 with half lives of 2 and 30 years, respectively.

  2. 2.

    Peta-Becquerel = 1015 Bq.

References

  • Aarkrog A (2003) Input of anthropogenic radionuclides into the World Ocean. Deep Sea Res II 50:2597–2606

    Article  CAS  Google Scholar 

  • Aoyama M (2012) Oceans and seas. In: Atwood DA (ed) Radionuclides in the environment. Wiley & Sons, Ltd., Chichester, pp 339–345

    Google Scholar 

  • Aoyama M (2015a) 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi nuclear power plant accident, Japan. Part one: surface pathway and vertical distributions. J Oceanogr 72:53. doi:10.1007/s10872-015-0335-z

    Article  Google Scholar 

  • Aoyama M (2015b) 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi nuclear power plant accident, Japan. Part two: estimation of 134Cs and 137Cs inventories in the North Pacific Ocean. J Oceanogr 72(1):67–76. doi:10.1007/s10872-015-0332-2

    Article  Google Scholar 

  • Buesseler K (2015) Tracking the fate of particle associated Fukushima Dai-ichi Caesium in the ocean off Japan. Environ Sci Technol 49:9807–9816

    Article  CAS  Google Scholar 

  • Buesseler K, Dai M, Aoyama M, Benitez-Nelson C, Charmasson S, Higley K, Maderich V, Masqué P, Oughton D, Smith JN (2017) Fukushima Daiichi–derived radionuclides in the ocean: transport, fate, and impacts. Ann Rev Mar Sci 9:173–203

    Article  Google Scholar 

  • Daraoui A, Tosch L, Gorny M, Michel R, Goroncy I, Herrmann J, Nies H, Synal H-A, Alfimov V, Walther C (2016) Iodine-129, Iodine-127 and cesium-137 in seawater from the North Sea and the Baltic Sea. J Environ Radioact 162-163:289–299

    Article  CAS  Google Scholar 

  • Fisheries Agency of Japan (2015) Report on the monitoring of radionuclides in fishery products (March 2011–January 2015). www.jfa.maff.go.jp/e/inspection/pdf/report_on_the_monitoring_of_radionuclides_in_fishery_products.pdf. Accessed 26 Oct 2016

  • Gwynn JP, Nikitin A, Shershakov V, Heldal HE, Lind B, Teien H-C, Lind OC, Sidhu RS, Bakke G, Kazennov A, Grishin D, Fedorova A, Blinova O, Sværen I, Liebig PL, Salbu B, Wendell CC, Strålberg E, Valetova N, Petrenko G, Katrich I, Logoyda I, Osvath I, Levy I, Bartocci J, Khanh Pham M, Sam A, Nies H, Rudjord AL (2016) Main results of the 2012 joint Norwegiane Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Stepovogo Fjord, Novaya Zemlya. J Environ Radioact 151:417–426

    Article  CAS  Google Scholar 

  • HELCOM (1989) Three years observations of the levels of some radionuclides in the Baltic Sea after the Chernobyl accident. Baltic Sea environment proceedings, No. 31. Helsinki: Baltic environment protection commission – Helsinki commission

    Google Scholar 

  • HELCOM (2013) Thematic assessment of long-term changes in radioactivity in the Baltic Sea, 2007-2010. Baltic Sea environment proceedings, No. 135. Helsinki: Baltic environment protection commission – Helsinki commission

    Google Scholar 

  • Hirose K (2016) Current trends of 137Cs concentrations in coastal waters near the Fukushima Daiichi NPP. J Radioanal Nucl Chem 307:1699–1702. doi:10.1007/s10967-015-4537-z

    Article  CAS  Google Scholar 

  • IAEA (1998) Radiological conditions of the Western Kara Sea: Assessment of the radiological impact of the dumping of radioactive waste in the Arctic Seas. In: Report in the international artic seas assessment project (IASAP). International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2005) Worldwide marine radioactivity studies (WOMARS): radionuclide levels in oceans and seas. IAEA, Vienna

    Google Scholar 

  • IAEA (2015) Inventory of radioactive material resulting from historical dumping, accidents and losses at sea: for the purposes of the London convention 1972 and London protocol 1996, IAEA-TECDOC-1776. IAEA, Vienna

    Google Scholar 

  • Kershaw P (2010) Atlantic ocean. In: Atwood DA (ed) Radionuclides in the environment. Wiley & Sons, Ltd., Chichester, pp 361–373

    Google Scholar 

  • Kobayashi T, Nagai H, Chino M, Kawamura H (2013) Source term estimation of atmospheric release due to the Fukushima Dai-ichi nuclear power plant accident by atmospheric and oceanic dispersion simulations. J Nucl Sci Technol 50:255–264

    Article  CAS  Google Scholar 

  • Michel R, Daraoui A, Gorny M, Jakob D, Sachse R, Tosch L, Nies H (2012) 129I and 127I in European seawaters and in precipitation from Northern Germany. Sci Total Environ 419:151–169

    Article  CAS  Google Scholar 

  • Nakata K, Sugisaki H (eds) (2015) Impacts of the Fukushima nuclear accident on fish and fishing grounds. Springer, Tokyo

    Google Scholar 

  • Nies H, Obrikat D, Herrmann J (2000) Recent radionuclide concentrations in the North Sea as a result of discharges from nuclear installations. Kerntechnik 65:195–200

    CAS  Google Scholar 

  • Nies H, Goroncy I, Hermann J, Michel R, Daraoui A et al. (2010) Kartierung von 99Tc, 129I und 127I im Oberflächenwasser der Nordsee: Abschlussbericht zum Forschungsvorhaben StSch 4881. Schriftenreihe Reaktorsicherheit und Strahlenschutz

    Google Scholar 

  • OSPAR Commission (2015) Liquid discharges from nuclear installations, 2013. OSPAR Commission, London

    Google Scholar 

  • Otosaka S, Kato Y (2014) Radiocesium derived from the Fukushima Daiichi nuclear power plant accident in seabed sediments: initial deposition and inventories. Environ Sci Process Impacts 16:978–990

    Article  CAS  Google Scholar 

  • Povinec PP, Bailly du Bois P, Kershaw PJ, Nies H, Scotto P (2003) Temporal and spatial trends in the distribution of 137Cs in surface waters of Northern European Seas: a record of 40 years of investigations. Deep Sea Res II 50:2785–2801

    Article  CAS  Google Scholar 

  • Ribbe J, Müller-Navarra SH, Nies H (1991) A one-dimensional dispersion model for radionuclides in the marine environment applied to the Chernobyl fallout over the Northern Baltic Sea. J Environ Radioact 14:55–72. doi:10.1016/0265-931X(91)90015-8

    Article  CAS  Google Scholar 

  • Smith JN, Brown RM, Williams WJ, Robert M, Nelson R, Moran SB (2015) Arrival of the Fukushima radioactivity plume in North American continental waters. Proc Natl Acad Sci U S A 112:1310–1315

    Article  CAS  Google Scholar 

  • Steinhauser G, Niisoe T, Harada KH, Shozugawa K, Schneider S, Synal H-A, Walther C, Christl M, Nanba K, Ishikawa H, Koizumi A (2015) Post-accident sporadic releases of airborne radionuclides from the Fukushima Daiichi nuclear power plant site. Environ Sci Technol 49:14028–14035

    Google Scholar 

  • Trapeznikov AV, Pozolotina VN, Chebotina MY, Chukanov VN, Trapeznikova VN, Kulikov NV, Nielsen SP, Aarkrog A (1993) Radioactive contamination of the Techa River, the Urals. Health Phys 65:481–488

    Article  CAS  Google Scholar 

  • UNSCEAR (2000) United Nations scientific committee on the effects of ionizing radiation: sources and effects of ionizing radiation. UN, New York

    Google Scholar 

  • Yablokov AV, Karasev BK, Rumyantsev VM, Kokeyev ME, Petrov OI, Lystsov BN, Yemelyanenkov AF, Rubtsov PM (1993) “White book”. Facts and problems related to radioactive waste disposal in seas adjacent to the territory of the Russian Federation on, Office of the President of the Russian Federation. Small World Publisher, Moscow

    Google Scholar 

  • Yang X, North R, Romney C, Richards PG (2000) Worldwide nuclear explosions. CMR technical report, CMR-00/16, third revision 2000

    Google Scholar 

  • Yu W, He J, Lin W, Li Y, Men W, Wang F, Huang J (2015) Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the northwest Pacific. J Environ Radioact 142:54–61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Nies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Nies, H. (2018). Origin and Management of Radioactive Substances in the Marine Environment. In: Salomon, M., Markus, T. (eds) Handbook on Marine Environment Protection . Springer, Cham. https://doi.org/10.1007/978-3-319-60156-4_38

Download citation

Publish with us

Policies and ethics