Skip to main content

Part of the book series: Wireless Networks ((WN))

Abstract

The increasing number of road accidents and more frequent traffic congestion have resulted in the evolution of intelligent transportation systems (ITS) [6] and other mobile distributed applications which improve road safety, increase transportation efficiency, and provide on-board infotainment. On the other hand, the rapid advancement of wireless communication technology and automotive industries have led to the paradigm of vehicular ad hoc network (VANET) as a promising approach to provide a communication infrastructure supporting ITS and other on-board applications, primarily to improve road safety. In VANETs, vehicles are equipped with various onboard sensors, which gather information, and communication devices, which provide networking interface to exchange the gathered information through wireless medium. According to the National Highway Traffic Safety Administration (NHTSA) of the United States Department of Transportation (USDoT), traffic accidents, specifically unimpaired vehicle crashes, can be reduced by approximately 80% through the deployment of road safety applications enabled by VANETs [7]. In addition, comfort related applications such as gaming, automatic toll collection, drive-thru Internet connections, multimedia services are expected to be delivered to vehicles for their drivers and passengers, providing on-board infotainment services [8–10].

2016 IEEE. Some of the material in this book (including figures, tables, and text) are reprinted, with permission, from [ 1 5 ].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Safety messages can be either periodic or event-driven [30]. Periodic messages are generated periodically, normally 10 messages per second, and consist of information such as position, speed, deceleration, etc. On the other hand, event-driven messages are generated when some unexpected events occur, such as bad road condition, sudden lane changing, etc., to warn the nearby drivers about the events.

References

  1. S. Bharati, W. Zhuang, CAH-MAC: cooperative ADHOC MAC for vehicular networks. IEEE J. Sel. Areas Commun. 31(9), 470–479 (2013)

    Article  Google Scholar 

  2. S. Bharati, W. Zhuang, Performance analysis of cooperative ADHOC MAC for vehicular networks, in Proceedings of IEEE Global Communications Conference (GLOBECOM) (2012)

    Google Scholar 

  3. S. Bharati, L. Thanayankizil, F. Bai, W. Zhuang, Effects of time slot reservation in cooperative ADHOC MAC for vehicular networks, in Proceedings of IEEE International Conference on Communications (ICC) (2013)

    Google Scholar 

  4. S. Bharati,W. Zhuang, L.V. Thanayankizil, F. Bai, Link-layer cooperation based on distributed TDMA MAC for vehicular networks. IEEE Trans. Veh. Technol. 66(7), 6415–6427 (2017)

    Article  Google Scholar 

  5. S. Bharati, W. Zhuang, CRB: a cooperative relay broadcasting framework to support safety applications in vehicular networks. IEEE Trans. Veh. Technol. 65(12), 9542–9553 (2016)

    Article  Google Scholar 

  6. United States Department of Transportation, Intelligent transportation systems. [Online]. Available: http://www.its.dot.gov/index.htm

  7. Dot launches largest-ever road test of connected vehicle crash avoidance technology. [Online]. Available: http://goo.gl/Oe1hBG

  8. R. Baldessari, B. Bdekker, A. Brakemeier, M. Deegener, A. Festag, W. Franz, A. Hiller, C. Kellum, T. Kosch, A. Kovacs, M. Lenardi, A. Lbke, C. Menig, T. Peichl, M. Roeckl, D. Seeberger, M. Strassberger, H. Stratil, H.-J. Vgel, B. Weyl, W. Zhang, Car-2-car communication consortium manifesto. Technical Report Version 1.1 (2007)

    Google Scholar 

  9. N. Lu, N. Cheng, N. Zhang, X. Shen, J.W. Mark, Connected vehicles: solutions and challenges. IEEE Internet Things J. 1(4), 289–299 (2014)

    Article  Google Scholar 

  10. T.H. Luan, L.X. Cai, J. Chen, X.S. Shen, F. Bai, Engineering a distributed infrastructure for large-scale cost-effective content dissemination over urban vehicular networks. IEEE Trans. Veh. Technol. 63(3), 1419–1435 (2014)

    Article  Google Scholar 

  11. FleetNet Projects. [Online]. Available: http://uk.nec.com/en_GB/emea/about/neclab_eu/projects/fleetnet.html

  12. CarTalk Projects. [Online]. Available: http://www.cartalk2000.net/

  13. Network on Wheels Projects. [Online]. Available: http://www.network-on-wheels.de/

  14. SAFESPOT Projects. [Online]. Available: http://www.safespot-eu.org/

  15. CVIS Projects. [Online]. Available: http://www.cvisproject.org/

  16. Coopers Projects. [Online]. Available: http://www.coopers-ip.eu/

  17. Car-to-Car Communication Consortium. [Online]. Available: http://www.car-2-car.org/

  18. Vehicle Infrastructure Integration. [Online]. Available: http://www.vehicle-infrastructure.org/

  19. U.S. Federal Communications Commission (FCC), FCC report and order 03-324 (2004). [Online]. Available: https://apps.fcc.gov/edocs_public/attachmatch/FCC-03-324A1.pdf

  20. European Telecommunications Standards Institute (ETSI) European standard, ETSI EN 302 571 V1.2.1, Intelligent transport systems ITS; radiocommunications equipment operating in the 5855 MHz to 5925 MHz frequency band; harmonized EN covering the essential requirements of article 3.2 of the R & TTE directive (2013). [Online]. Available: http://www.etsi.org/deliver/etsi_en/302500_302599/302571/01.02.01_60/en_302571v010201p.pdf

  21. A. of Radio Industries and A. Businesses (ARIB) standard, 700 Mhz band intelligent transportation systems (2012). [Online]. Available: http://www.arib.or.jp/english/html/overview/doc/5-STD-T109v1_2-E1.pdf

  22. M. of Internal Affairs and C. M. in Japan, Frequency allocation table 2 (annexes 8.8 and 11.3) (2015). [Online]. Available: http://www.tele.soumu.go.jp/e/adm/freq/search/share/plan.htm

  23. A. of Radio Industries and A. Businesses (ARIB) standard, Dedicated short range communication for transport information and control systems (1997). [Online]. Available: http://www.arib.or.jp/english/html/overview/doc/5-STD-T55v1_0-E.pdf

  24. A. of Radio Industries and A. Businesses (ARIB) standard, Dedicated short range communication system (2001). [Online]. Available: http://www.arib.or.jp/english/html/overview/doc/5-STD-T75v1_0-E2.pdf

  25. H. Moustafa, Y. Zhang, Vehicular Networks: Techniques, Standards, and Applications (Auerbach, Boston, MA, 2009)

    Book  Google Scholar 

  26. J. Jakubiak, Y. Koucheryavy, State of the art and research challenges for VANETs, in Proceedings of IEEE Consumer Communications and Networking Conference (CCNC) (2008)

    Google Scholar 

  27. H. Hartenstein, K. Laberteaux, A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 46(6), 164–171 (2008)

    Article  Google Scholar 

  28. E. Schoch, F. Kargl, M. Weber, T. Leinmuller, Communication patterns in VANETs. IEEE Commun. Mag. 46(11), 119–125 (2008)

    Article  Google Scholar 

  29. G.A.G. Mosqueda, R.A. Santos, L.A.V. Gonzlez, V.R. Licea, A.E. Block, Mobile Ad-Hoc Networks: Applications, 1st edn. (Janeza Trdine, Rijeka, 2011)

    Google Scholar 

  30. The CAMP Vehicle Safety Communications Consortium, Technical Report DOT HS 809 859, Vehicle safety communications project task 3 final report (2005)

    Google Scholar 

  31. M. Wang, H. Shan, R. Lu, R. Zhang, X. Shen, F. Bai, Real-time path planning based on hybrid-VANET-enhanced transportation system. IEEE Trans. Veh. Technol. 64(5), 1664–1678 (2015)

    Article  Google Scholar 

  32. H.T. Cheng, H. Shan, W. Zhuang, Infotainment and road safety service support in vehicular networking: From a communication perspective. Mech. Syst. Signal Process. 25(6), 2020–2038 (2011)

    Article  Google Scholar 

  33. F. Bai, D.D. Stancil, H. Krishnan, Toward understanding characteristics of dedicated short range communications (DSRC) from a perspective of vehicular network engineers, in Proceedings of Annual International Conference on Mobile Computing and Networking (2010)

    Google Scholar 

  34. C. Mecklenbrauker, A. Molisch, J. Karedal, F. Tufvesson, A. Paier, L. Bernado, T. Zemen, O. Klemp, N. Czink, Vehicular channel characterization and its implications for wireless system design and performance. Proc. IEEE 99(7), 1189–1212 (2011)

    Article  Google Scholar 

  35. J. Karedal, N. Czink, A. Paier, F. Tufvesson, A. Molisch, Path loss modeling for vehicle-to-vehicle communications. IEEE Trans. Veh. Technol. 60(1), 323–328 (2011)

    Article  Google Scholar 

  36. W. Alasmary, W. Zhuang, Mobility impact in IEEE 802.11p infrastructureless vehicular networks. Ad Hoc Netw. 10(2), 222–230 (2012)

    Google Scholar 

  37. Q. Xu, T. Mak, J. Ko, R. Sengupta, Vehicle-to-vehicle safety messaging in DSRC, in Proceedings of ACM International Workshop on Vehicular Ad Hoc Network (2004)

    Google Scholar 

  38. X. Ma, J. Zhang, X. Yin, K. Trivedi, Design and analysis of a robust broadcast scheme for VANET safety-related services. IEEE Trans. Veh. Technol. 61(1), 46–61 (2012)

    Article  Google Scholar 

  39. F. Yu, S. Biswas, Self-configuring TDMA protocols for enhancing vehicle safety with DSRC based vehicle-to-vehicle communications. IEEE J. Sel. Areas Commun. 25(8), 1526–1537 (2007)

    Article  Google Scholar 

  40. F. Ros, P. Ruiz, I. Stojmenovic, Acknowledgment-based broadcast protocol for reliable and efficient data dissemination in vehicular ad hoc networks. IEEE Trans. Mob. Comput. 11(1), 33–46 (2012)

    Article  Google Scholar 

  41. H. Shan, W. Zhuang, Z. Wang, Distributed cooperative MAC for multihop wireless networks. IEEE Commun. Mag. 47(2), 126–133 (2009)

    Article  Google Scholar 

  42. S. Narayanan, S. Panwar, To forward or not to forward – that is the question. Wirel. Pers. Commun. 43, 65–87 (2007)

    Article  Google Scholar 

  43. T. Zhou, H. Sharif, M. Hempel, P. Mahasukhon, W. Wang, T. Ma, A novel adaptive distributed cooperative relaying MAC protocol for vehicular networks. IEEE J. Sel. Areas Commun. 29(1), 72–82 (2011)

    Article  Google Scholar 

  44. W. Zhuang, M. Ismail, Cooperation in wireless communication networks. IEEE Wirel. Commun. 19(2), 10–20 (2012)

    Article  Google Scholar 

  45. H. Zhu, G. Cao, rDCF: a relay-enabled medium access control protocol for wireless ad hoc networks. IEEE Trans. Mob. Comput. 5(9), 1201–1214 (2006)

    Article  Google Scholar 

  46. P. Liu, Z. Tao, S. Narayanan, T. Korakis, S.S. Panwar, CoopMAC: a cooperative MAC for wireless LANs. IEEE J. Sel. Areas Commun. 25(2), 340–354 (2007)

    Article  Google Scholar 

  47. S. Moh, C. Yu, A cooperative diversity-based robust MAC protocol in wireless ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 22(3), 353–363 (2011)

    Article  Google Scholar 

  48. F. Borgonovo, A. Capone, M. Cesana, L. Fratta, ADHOC MAC: new MAC architecture for ad hoc networks providing efficient and reliable point-to-point and broadcast services. Wirel. Netw. 10, 359–366 (2004)

    Article  Google Scholar 

  49. H. Omar, W. Zhuang, L. Li, VeMAC: a TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Trans. Mob. Comput. 12(9), 1724–1736 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bharati, S., Zhuang, W. (2018). Introduction. In: Link-Layer Cooperative Communication in Vehicular Networks. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-58721-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58721-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58720-2

  • Online ISBN: 978-3-319-58721-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics