Skip to main content

Interaction of Mycorrhizal Fungi and Azotobacter with Root-Knot Nematodes and Root-Chewing Insects

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 25))

Abstract

Due to the rapid growth of population, the demand for food is set to rise by 60% by 2030. Chemical fertilizers have been used extensively to enhance crop productivity to meet this demand, resulting in deterioration of the environment. Rhizospheric microorganisms maintain a close relationship with plants and help stimulate plant growth. Arbuscular mycorrhizal fungi are ubiquitous and form a symbiotic association with many higher plants. They improve mineral nutrient uptake and enhance abiotic stress tolerance. Plant growth promoting rhizobacteria (PGPR) colonize the root zone and provide beneficial effects. Azotobacter is a diazotrophic plant-growth promoting rhizobacteria that stimulates plant growth through nitrogen fixation and production of stimulating substances. Both these microorganisms have been extensively used in supplementing the nutrient demand of the crop, thereby reducing dependence on chemical fertilizers .

Root-parasitic nematodes reduce productivity of most cultivated plants throughout the world. Root-parasitic nematodes are endoparasites and enter through the roots. Mycorrhizal fungi protect the plants from damages caused by root-parasitic nematodes. In general, pre-inoculation with mycorrhizal fungi leads to reduced nematode population, improves plant growth and nutrient uptake. Glomus fasciculatum is most efficient in suppressing nematode population. The antagonistic effect of Azotobacter on nematode development and multiplication in the host plant has been observed. Organic amendments including oil-seed cakes and botanicals have also been used for reducing the severity of nematode infestation. Synergistic interaction of arbuscular mycorrhizal fungi with other bioinoculants, nematicides and organic amendments on nematode suppression has been observed. Plant growth promoting and biocontrol traits along with induction of systemic resistance are the main disease protection mechanisms of bio-inoculants. Whereas organic amendments suppress nematode population in soil by modifying soil physical properties, producing nematicidal compounds and antagonistic secondary metabolites. Depending on the identity of the interacting fungal partner and the insect, both negative as well as positive impacts of arbuscular mycorrhizal fungi colonization on root-feeding insects have been observed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Fattah GM, El-Dohlob SM, El-Haddad SA, Hafez EE, Rashad YM (2010) An ecological view of arbuscular mycorrhizal status in some Egyptian plants. J Environ Sci 37:123–136

    Google Scholar 

  • Abohatem M, Chakrafi F, Jaiti F, Dihazi A, Baaziz M (2011) Arbuscular mycorrhizal fungi limit incidence of Fusarium oxysporum f. sp. albedinis on date palm seedlings by increasing nutrient contents, total phenols and peroxidase activities. Open Hort J 4:10–16

    Article  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Akhtar M (1998) Biological control of plant-parasitic nematodes by neem products in agricultural soil. Appl Soil Ecol 7:219–223

    Article  Google Scholar 

  • Akhtar M, Alam MM (1993) Control of plant-parasitic nematodes by ‘Nimin’- an ureacoating agent and some plant oils. Zetschrift fur Pflanzenkrankhei ten und Pflanzenschutz 100:337–342

    Google Scholar 

  • Akhtar M, Mahmood I (1996a) Control of plant-parasitic nematodes with organic and inorganic amendments in agricultural soil. Appl Soil Ecol 4:243–247

    Article  Google Scholar 

  • Akhtar M, Mahmood I (1996b) Integrated nematode control in potato (Solanum tuberosum). Int Pest Contr 38:62–64

    Google Scholar 

  • Alam MM, Ahmad M, Khan AM (1980) Effect of organic amendment on the growth and chemical composition of tomato, egg plants and chilli and their susceptibility to attack by Meloidogyne incognita. Plant Soil 5:231–236

    Article  Google Scholar 

  • Alguacil MDM, Torrecillas E, Lozano Z, Roldan A (2011) Evidence of between the communities of arbuscular mycorrhizal fungi colonizing galls and roots of Prunus persica infected by the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 77:8656–8661

    Article  CAS  PubMed Central  Google Scholar 

  • Anjos ERTD, Cavalcante UMT, Goncalves DMC, Pedrosa EMR, Santos VFD, Lc M (2010) Interactions between an Arbuscular mycorrhizal fungus (Scutellospora hetrogama) and the root-knot nematode (Meloidogyne incognita) on sweet passion fruit (Passifloraata). Braz Arch Biol Technol 53:801–809

    Article  Google Scholar 

  • Anver S (2006) Control of plant parasitic nematodes associated with linseed by oil seed cakes and ploughing. Indian J Nematol 36:192–194

    Google Scholar 

  • Anwar-ul-Haq M, Anwar SA, Shahid M, Javed N, Khan SA, Mehamood K (2011) Management of root knot nematode Meloidogyne incognita by plant growth promoting rhizobacteria on tomato. Pak J Zool 43:1027–1031

    Google Scholar 

  • Aparajita B, Neog PP, Sinha AK (2009) Effect of soil types on efficacy of Glomus fasciculatum in management of Meloidogyne incognita on green gram. Annl Plant Prot Sci 17:206–208

    Google Scholar 

  • Arun KS (2007) Biofertilizers for sustainable agriculture. Mechanism of P-solubilization, 6th edn. Agribios Publishers, Jodhpur, pp 196–197

    Google Scholar 

  • Ashraf MS, Khan TA (2010) Integrated approach for the management of M. javanica on eggplant using oil seed cakes and biocontrol agents. Arch Phytopathol Plant Protect 43:609–614

    Article  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Badra T, Eligindi DM (1979) The relationship between phenolic content and Tylenchulus semipenetrans populations in nitrogen amended citrus plants. Rev de Nematol 2:161–164

    Google Scholar 

  • Badra T, Saleh MA, Oteifa BA (1979) Nematicidal activity and composition of some organic fertilizers and amendments. Rev de Nematol 2:29–36

    CAS  Google Scholar 

  • Bansal RK, Verma VK (2002) Antagonistic efficacy of Azotobacter chroococcum against Meloidogyne javanica infecting brinjal. Indian J Nematol 32:132–134

    Google Scholar 

  • Barber NA, Gorden NLS (2014) How do belowground organisms influence plant–pollinator interactions. J Plant Ecol:1–11

    Google Scholar 

  • Barber NA, Milano NJ, Kiers ET, Theis N, Bartolo V, Hazzard RV, Adler LS (2015) Root herbivory indirectly affects above- and below-ground community members and directly reduces plant performance. J Ecol 103:1509–1518

    Article  CAS  Google Scholar 

  • Bashan Y, de- Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 103–115

    Chapter  Google Scholar 

  • Bell RW, Dell B (2008) Micronutrients for sustainable food, feed, fibre and bioenergy production, 1st edn. IFA, Paris. www.fertilizer.org

    Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288

    Article  Google Scholar 

  • Bhardwaj A, Sharma S (2006) Biocontrol of Meloidogyne incognita in Lycopersicon esculentum with AM fungi and oil cakes. Plant Pathol J 5:166–172

    Article  Google Scholar 

  • Bhattacharya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Borah A, Phukan PN (2004) Comparative efficacy of Glomus fsciculatum with neem cake and carbofuran for the management of Meloidogyne incognita on brinjal. Indian J Nematol 34:129–132

    Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Caillaud M, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, de Almeida EJ, Abad P, Rosso M, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113

    Article  CAS  PubMed  Google Scholar 

  • Castillo P, Nico AI, Azcon-Aguilar C, Del Rio RC, Calvet C, Ji Menez Diaz RM (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol 55:705–713

    Article  Google Scholar 

  • Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20:283–290

    Article  CAS  PubMed  Google Scholar 

  • Chahal PPK, Chahal VPS (1986) Effect of Azotobacter chroococcum on the hatching of egg masses and eggs of Meloidogyne incognita. Plant Soil 95:289–291

    Article  Google Scholar 

  • Chatterjee A (2002) Use of nitrogen fixing bacteria to combat root-knot nematodes. J Mycopathol Res 40:125–127

    Google Scholar 

  • Chitwood DJ (2003) Research on plant- parasitic nematode biology conducted by the United States department of agriculture agricultural research service. Pest Manag Sci 59:748–753

    Article  CAS  PubMed  Google Scholar 

  • Cofcewicz ET, Medeiros CAB, Carneiro RMDG, Pieroborn CR (2001) Interaction of arbuscular mycorrhizal fungus Glomus etunicatum and Gigaspora margarita and root knot nematode Meloidogyne javanica in tomato. Fitopath Brasil 26:65–70

    Article  Google Scholar 

  • Currie AF, Murray PJ, Gange AC (2011) Is a specialist root-feeding insect affected by arbuscular mycorrhizal fungi. Appl Soil Ecol 47:77–83

    Article  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, Waele DD (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernanda C, Echeverría HE, Pagano MC (2012) Arbuscular mycorrhizal fungi: essential below ground organisms for earth life but sensitive to a changing environment. Afr J Microbiol Res 6:5523–5535

    Google Scholar 

  • Flor-Peregrin E, Azcon R, Martos V, Verdejo-Lucas S, Talavera M (2014) Effects of dual inoculation of mycorrhiza and endophytic, rhizospheric or parasitic bacteria on the root-knot nematode disease of tomato. Biocontrol Sci Tech 24:1122–1136

    Article  Google Scholar 

  • Gange AC (1996) Reduction in vine weevil larval growth by mycorrhizal fungi. Mitt Biol Bund Forst 316:56–60

    Google Scholar 

  • Gange AC (2001) Species-specific responses of a root- and shootfeeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol 150:611–618

    Article  Google Scholar 

  • Gehring C, Bennett A (2009) Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environ Entomol 38:93–102

    Article  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Goswami BK, Bhattacharya C, Paul R, Khan TA (2012) Performance of pesticide and biopesticide on growth, yield and forskolin content in Coleus forskohlii infected with Meloidogyne incognita. Pak J Nematol 30:49–56

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Hao Z, Fayolle L, Van TD, Chatagnier O, Li X, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defense gene responses in grapevine. J Exp Bot 63:3657–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan HR, Simon S, Lal AA, Kamaludden (2014) Influence of mycorrhizal fungus and certain rhizobacteria on root-knot-nematode (Meloidogyne incognita) and growth of brinjal (Solanum melongenal). Int J Botany Res 4:11–18

    Google Scholar 

  • Hindumathi A, Reddy BN (2011) Occurrence and distribution of arbuscular mycorrhizal fungi and microbial flora in the rhizosphere soils of mungbean [Vigna radiata (L.) wilczek] and soybean [Glycine max (L.) Merr.] from Adilabad, Nizamabad and Karimnagar districts of Andhra Pradesh state, India. Adv Biosci Biotechnol 2:275–286

    Article  CAS  Google Scholar 

  • Ingham RE (1988) Interaction between nematodes and vesicular-arbuscular mycorrhizae. Agric Ecosyst Environ 24:169–182

    Article  Google Scholar 

  • Jain RK, Hasan N (1986) Association of vesicular-arbuscular mycorrhizal fungi (VAM) and plant parasitic nematodes with forage sorghum (Sorghum bicolor L.) Sorghum Newsl 29:84

    Google Scholar 

  • Jaizme-Vega MC, Rodriguez-Romero ASM, Barroso Nunez LA (2006) Effect of arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61:1–7

    Article  Google Scholar 

  • Javed N, Gowen SR, Inam-ul-Haq M, Anwar SA (2007) Protective and curative effect of neem (Azadirachta indica) formulations on the development of root-knot nematode Meloidogyne javanica in roots of tomato plants. Crop Prot 26:530–534

    Article  Google Scholar 

  • Javed N, Anwar SA, Fyaz S, Khan MM, Ashfaq M (2008) Effects of neem formulations applied as soil drenching on the development of root-knot nematode Meloidogyne javanica on roots of tomato. Pak J Bot 40:905–910

    Google Scholar 

  • Johnson SN, Rasmann S (2015) Root-feeding insects and their interactions with organisms in the rhizosphere. Annu Rev Entomol 60:517–535

    Article  CAS  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kalaiarasan P, Senthamarai M, Ramesh D, Sudheer MJ (2007) Jatropha: an efficient organic amendment for the management of root-knot nematode, Meloidogyne incognita in tomato. Indian J Nematol 37:115–118

    Google Scholar 

  • Kantar F, Hafeez FY, Kumar BGS, Sundram SP, Tejera NA, Aslam A, Bano A, Raja P (2007) Chickpea: Rhizobium management and nitrogen fixation. Chickpea breeding management. Microbiol Res 153:113–117

    Google Scholar 

  • Kantharaju V, Krishnappa K, Ravichandra NG, Karuna K (2005) Management of root-knot nematode Meloidogyne incognita on tomato by using indigenous isolates of am fungus, Glomus fasciculatum. Indian J Nematol 35:32–36

    Google Scholar 

  • Kass DL, Drosdoff M, Alexander M (1971) Nitrogen fixation by Azotobacter paspalia in association with Bahiagrass (Paspalum notatum). Soil Sci Soc Amer J 35:286–289

    Article  CAS  Google Scholar 

  • Khan TA, Saxena SK (1997) Inegrated management of root knot nematode Meloidogyne javanica infecting tomato using organic materials and Paecilomyces lilacinus. Bioresour Technol 61:247–250

    Article  Google Scholar 

  • Khan MR, Kounsar K (2000) Effect of seed treatment with certain bacteria and fungi on the growth of mungbean and reproduction of Meloidogyne incongita. Nematol Mediterr 28:221–226

    Google Scholar 

  • Khan MR, Kounsar K, Hamid A (2002) Effect of certain rhizobacteria and antagonistic fungi on root nodulation and root-knot nematode disease of green gram. Nematol Mediterr 30:85–89

    Google Scholar 

  • Khan MR, Jain RK, Singh RV, Pramanik A (2010) Economically important plant parasitic nematodes distribution ATLAS. Indian council of agricultural research, New Delhi, pp 137. http://www.iari.res.in/files/atlas.pdf

  • Khan Z, Tiyagi SA, Mahmood I, Rizvi R (2012) Effects of N fertilization, organic matter and biofertilizers on the growth and yield of chilli in relation to management of plant-parasitic nematodes. Turk J Bot 36:73–81

    CAS  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007) Establishment of Azotobacter on plant roots: chemotactic response development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) J Basic Microbiol 47:436–439

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems, 1st edn. Springer, New York, pp 37–59

    Chapter  Google Scholar 

  • Labeena D, Sreenivasa MN, Lingaraju S (2002) Interaction effects between arbuscular mycorrhizal fungi and root-knot nematode Meloidogyne incognita on tomato. Indian J Nematol 32:118–120

    Google Scholar 

  • Ladha JK, Padre AT, Punzalan GC, Castillo E, Singh U, Reddy CK (1998) Nondestructive estimation of shoot nitrogen in different rice genotypes. Agron J 90:33–40

    Article  Google Scholar 

  • Laird RA, Addicott JF (2008) Neutral indirect effects of mycorrhizal fungi on a specialist insect herbivore. Environ Entomol 37:1017–1024

    Article  PubMed  Google Scholar 

  • Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants–a meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Lopes EA, Ferraz S, Dhingra OD, Ferreira PA, Freitas LG (2008) Soil amendment with castor bean oilcake and jackbean seed powder to control Meloidogyne javanica on tomato roots. Nematol Brasil 33(1):106–109

    Google Scholar 

  • Lugtenberg BJJ, Kamilova FD (2004) Rhizosphere management: microbial manipulation for biocontrol. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 1098–1101

    Chapter  Google Scholar 

  • Martyniuk S, Martyniuk M (2003) Occurrence of Aotobacter spp. in some polish soils. Pol J Environ Stud 12:371–374

    CAS  Google Scholar 

  • Mian IH, Rodriguez-Kabana R (1982) Organic amendments with high tannin and phenolic contents for control of Meloidogyne arenaria in infested soil. Nematropica 12:221–234

    Google Scholar 

  • Mishra A (1996) Interaction of Glomus fasciculatum, Meloidogyne incognita and herbicide in tomato. J Res Birra Agri Univ 8:25–31

    Google Scholar 

  • Mishra A, Shukla BN (1997) Interaction between Glomus fasciculatum and Meloidogyne incognita on tomato. J Mycol Plant Pathol 27:199–202

    Google Scholar 

  • Muthukumar T, Udaiyan K (2002) Arbuscular mycorrhizal fungal composition in semiarid soils of western Ghats, southern India. Curr Sci 82:624–628

    Google Scholar 

  • Nagesh M, Parvatha Reddy P, Rao MS (1999) Comparative efficacy of VAM fungi in combination with neem cake against Meloidogyne incognita on Crossandra undulaefolia. Mycorrhiza News 11:11–13

    Google Scholar 

  • Neog PP, Islam M, Gogoi BB (2007) Effect of different spore levels and time of inoculation of VAM fungus, Glomus fasciculatum against root-knot nematode, Meloidogyne incognita on greengram. Crop Res 34:243–245

    Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc 15:327–337

    Google Scholar 

  • Osman HA, Korayan AM, Ameen HH, Badr-Eldin SMS (2005) Interaction of root-knot nematode and mycorrhizal fungi on common bean Phaseolus vulgaris L. J Pest Sci 63:129–131

    Google Scholar 

  • Pandey S (2011) Can VAM occurring in the rhizosphere of cowpea be a source of natural antagonist to Heterodera cajani population? Indian J Fund Appl Life Sci 1:51–58

    Google Scholar 

  • Pandey G, Pandey RK, Pant H (2005) Influence of organic amendments on nematode fauna and microflora of chickpea rhizosphere. Indian J Pulses Res 18:263–264

    Google Scholar 

  • Parihar K, Rehman B, Ganai MA, Asif M, Siddiqui MA (2015) Role of oil cakes and Pochonia chlamydosporia for the management of Meloidogyne javanica attacking Solanum melongena L. J Plant Pathol Microbiol (Special issue) S1:1–5. doi:10.4172/2157-7471.S1-004

    Google Scholar 

  • Parveen G, Alam MM (1999) Efficacy of neem products for the management of root-knot nematode on tomato, in soil polluted with heavy metals, cadmium and lead. In: Singh RP, Saxena RC (eds) Azadirachta indica A Juss. Science Publishers, Enfield, pp 235–244

    Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Radwan MA, El-Maadawy EK, Kaseem SI, Abu-Elamayem MM (2009) Oil cakes soil amendments effects on Meloidogyne incognita, root-knot nematode infecting tomato. Arch. Phytopath. Plant Prot 42:58–64

    CAS  Google Scholar 

  • Ramos AC, Facanha AR, Palma LM, Okorokov LA, Cruz ZMA, Silva AG, Siqueira AF, Bertolazi AA, Canton GC, Melo J, Santos WO, Schimitberger VMB, Okorokova-Façanha AL (2011) An outlook on ion signaling and ionome of mycorrhizal symbiosis. Braz J Plant Physiol 23:79–89

    Article  CAS  Google Scholar 

  • Rangaswamy SD, Reddy PP, Nagesh M (2000) Evaluation of bio-control agents (Pasteuria penetrans and Trichoderma viride) and botanicals for the management of root-knot nematode, Meloidogyne incognita infecting tomato. Pest Manag Hortic Ecos 6:135–138

    Google Scholar 

  • Rao MS, Reddy PP, Nagesh M (1997) Integrated management of Meloidogyne incognita on okra by castor cake suspension and Paecilomyces lilacinus. Nematol Mediterr 25:17–19

    Google Scholar 

  • Ravindra H, Sehgal M, Pawan AS, Archana BS, Shruti SA, Narasimhamurty HB (2014) Eco-friendly management of root-knot nematodes using acacia compost and bioagents in brinjal. Pak J Nematol 32:33–38

    Google Scholar 

  • Reddy DDR (1985) Analysis of crop losses in tomato due to Meloidogyne incognita. Indian J Nematol 15:55–59

    Google Scholar 

  • Renker C, Blanke V, Buscot F (2005) Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environ Pollut 135:255–266

    Article  CAS  PubMed  Google Scholar 

  • Rich JR, Rahi GS, Opperman CH, Davis EL (1989) Influence of the castor bean (Ricinus communis) lectin (ricin) on mortality of Meloidogyne incognita. Nematropica 19:99–101

    Google Scholar 

  • Rizvi R, Mahmood I, Tiyagi SA, Khan Z (2012a) Conjoint effect of oil-seed cakes and Pseudomonas fluorescens on the growth of chickpea in relation to the management of plant-parasitic nematodes. Braz Arch Biol Technol 55:801–808

    Article  CAS  Google Scholar 

  • Rizvi R, Mahmood I, Tiyagi SA, Khan Z (2012b) Effect of some botanicals for the management of plant-parasitic nematodes and soil-inhabiting fungi infesting chickpea. Turk J Agric For 36:710–719

    Google Scholar 

  • Rizvi R, Singh G, Safiuddin ARA, Tiyagi SA, Mahmood I (2015) Sustainable management of root-knot disease of tomato by neem cake and Glomus fasciculatum. Cogent Food Agric 1:1–13

    Google Scholar 

  • Sasser JN, Carter CC (1985) An advanced treatise on Meloidogyne, biology and control, vol 1. North Carolina State University Graphics, Raleigh, p 422

    Google Scholar 

  • Schubler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sharif M, Moawad AM (2006) Arbuscular mycorrhiza incidence and infectivity of crops in northwest frontier province of Pakistan. World J Agric Sci 2:123–132

    Google Scholar 

  • Shreenivasa KR, Krishnappa K, Ravichandra NG (2007) Interaction effects of arbuscular mycorrhizal fungus Glomus fasciculatum and root-knot nematode, Meloidogyne incognita on growth and phosphorus uptake of tomato. Karn J Agric Sci 20:57–61

    Google Scholar 

  • Siddiqui ZA (2004) Effects of plant growth promoting bacteria and composed organic fertilizers on the reproduction of Meloidogyne incognita and tomato growth. Bioresour Technol 95:223–227

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79:41–45

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2009) Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. J Gen Plant Pathol 75:144–153

    Article  Google Scholar 

  • Siddiqui ZA, Futai K (2009) Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plant growth promoting rhizobacteria and cattle manure. Pest Manag Sci 65:943–948

    Article  CAS  PubMed  Google Scholar 

  • Sikes BA, Powell JR, Rillig MC (2010) Deciphering the relative contributions of multiple functions within plant-microbe symbioses. Ecology 91:1591–1597

    Article  PubMed  Google Scholar 

  • Sitaramaiah K, Sikora RA (1982) Effect of the mycorrhizal fungus Glomus fasciculatum on the host parasite relationship of Rotylenchulus reniformis in tomato. Nematologica 28:412–419

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: Mycorrhizal Symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soliman AS, Shauky SM, Omar MNA (2011) Efficiency of bioagents in controlling rootknot nematode on Acacia plants in Egypt. American-Eurasian J Agric Environ Sci 10:223–229

    Google Scholar 

  • Song FQ, Kong XS (2012) Molecular process of arbuscular mycorrhizal associations and the symbiotic stabilizing mechanisms. Afr J Microbiol Res 6:870–880

    CAS  Google Scholar 

  • Sukul NC (1992) Plant antagonism to plant-parasitic nematodes. Indian Rev Life Sci 12:23–52

    Google Scholar 

  • Sumbul A, Rizvi R, Mahmood I, Ansari RA (2015) Oil-cake amendments: useful tools for the management of phytonematodes. Asian J Plant Pathol 9:91–111

    Article  Google Scholar 

  • Sundarababu, Sankaranaryanan RC, Saavicntm (1996) Studies on the effect of interaction of Meloidogyne incognita with Glomus fasciculatum. South India Hort 44:114–115

    Google Scholar 

  • Suresh CK, Bagyaraj DJ (1984) Interactions between vesicular-arbuscular mycorrhizae and a root knot nematode and its effect on growth and chemical composition of tomato. Nematol Mediterr 12:31–39

    Google Scholar 

  • Tejera N, Liuch C, Martinez-Toledo MV, Gonzalez-Lopez J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232

    Article  CAS  Google Scholar 

  • Tiyagi SA, Alam MM (1995) Efficacy of oil-seed cakes against plant-parasitic nematodes and soil inhabiting fungi on mungbean and chickpea. Bioresour Technol 51:233–239

    Article  CAS  Google Scholar 

  • Tiyagi SA, Mahmood I, Rizvi R (2010) Efficacy of some botanicals for the management of plant-parasitic nematodes and soil-inhabiting fungi on fenugreek (Trigonella foenum-graecum). J Med Arom Plant Sci 32:97–102

    Google Scholar 

  • Tiyagi SA, Safiuddin RR, Mahmood I, Khan Z (2015) Evaluation of organic matter, bio-inoculants and inorganic fertilizers on growth and yield attributes of tomato with respect to the management of plant-parasitic nematodes. Emirates J Food Agric 27:602–609

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Vannette RL, Hunter MD (2009) Mycorrhizal fungi as mediators of defence against insect pests in agricultural systems. Agric Forest Entomol 11:351–358

    Article  Google Scholar 

  • Vannette RL, Rasmann S (2012) Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions: a phylogenetic study. Funct Ecol 5:1033–1042

    Article  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, Waele DD, Elsen A (2012a) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345

    Article  CAS  Google Scholar 

  • Vos CM, Tesfahun AN, Panis B, Waele DD, Elsen A (2012b) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6

    Article  Google Scholar 

  • Walker C, Vestberg M, Schubler A (2007) Nomenclatural clarification in Glomeromycota. Mycol Res 11:253–255

    Google Scholar 

  • Wang B, Qiu Y (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of coinoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  CAS  Google Scholar 

  • Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2010) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity. Pedobiologia 53:197–201

    Article  Google Scholar 

  • Wesemael W, Viaene N, Moens M (2011) Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology 13:3–16

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wolfe BE, Husband BC, Klironomos JN (2005) Effects of a belowground mutualism on an above ground mutualism. Ecol Lett 8:218–223

    Article  Google Scholar 

  • Yadav YS, Siddiqui AU, Parihar A (2006) Effficacy of oil cakes as seed dressing treatment for the management of root-knot nematode, Meloidogyne incognita affecting chickpea. Indian J Nematol 36:151–152

    Google Scholar 

  • Youssef MMA, El-Ghonaimy AM, El-Nagdi WMA (2015) Evaluation of some commercial bacterial biofertilizers and isolates against root knot nematode, Meloidogyne incognita infesting green bean, Phaseolus vulgaris. Sci Agric 10:49–54

    Google Scholar 

  • Zuccaro A, Lahrmann U, Langen G (2014) Broad compatibility in fungal root symbioses. Curr Opin Plant Biol 20:135–145

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Senior author is thankful to the Head, Biology Department, Faculty of Science, Jazan University, Jazan, for encouragement to study bio-management of root-knot nematodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehra Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, Z., Khan, M.A., Ahmad, W., Paul, S. (2017). Interaction of Mycorrhizal Fungi and Azotobacter with Root-Knot Nematodes and Root-Chewing Insects. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-58679-3_10

Download citation

Publish with us

Policies and ethics