Skip to main content

Impact of Nanomaterials on the Aquatic Food Chain

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 26))

Abstract

The unique properties of nanoscale materials have made nanotechnology the major technology of the twenty-first century. Nanotechnology is now predicted to reach a market value of $3 trillion by 2020. Today, more than 1800 nano-enabled products are available in the consumer market. Nano-products and technologies are used in health and fitness, biomedicine, textiles, agriculture and waste-water treatment. As a consequence this has induced inadvertent release of engineered nanomaterials in the environment, particularly in waters. Engineered nanomaterials can interact with organisms of the food chain at lower and upper trophic levels. In recent years, progress has been made on the assessment of bioaccumulation, and on the trophic transfer of engineered nanomaterials.

Here we review the release and impact of nanomaterials, with focus on aquatic organisms, trophic transfer, biomagnification and policies. The major points are: engineered nanomaterials can move up to three trophic levels of the food chain. Biomagnification of quantum dots, gold nanoparticles and cerium oxide nanoparticles up to two trophic levels show a biomagnification factor greater than 1. Nonetheless, no studies have shown biomagnification at the third trophic level. It has been also observed that accumulation of engineered nanomaterials induces physiological processes of plants, protozoans, crustaceans and fish.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Wu F, White JC, Xing B (2014) 100 nanometers: a potentially inappropriate threshold for environmental and ecological effects of nanoparticles. Environ Sci Technol 48:3098–3099. doi:10.1021/es500365k

    Article  CAS  PubMed  Google Scholar 

  • Balaji S, Mandal BK, Shivendu R, Nandita D, Ramalingam C (2017) Nano-zirconia – evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133. doi:10.1016/j.jphotobiol.2017.04.004

    Article  CAS  Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt ES, Colman BP, Hochella MF Jr, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–1965

    Article  CAS  PubMed  Google Scholar 

  • Bondarenko OM, Heinlaan M, Sihtmäe M, Ivask A, Kurvet I, Joonas E, Jemec A, Mannerström M, Heinonen T, Rekulapelly R, Singh S (2016) Multilaboratory evaluation of 15 bioassays for (eco) toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicol 10(9):1229–1242

    Google Scholar 

  • Bouldin JL, Ingle TM, Sengupta A, Alexander R, Hannigan RE, Buchanan RA (2008) Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia Dubia. Environ Toxicol Chem/SETAC 27:1958–1963

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870

    Article  CAS  PubMed  Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and Nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem/SETAC 27:1922–1931

    Article  CAS  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia Narbonensis L. and Zea Mays L. J Nanopart Res 13:2443–2449

    Article  CAS  Google Scholar 

  • Chae Y, An YJ (2016) Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquat Toxicol 173:94–104

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Seiber JN, Hotze M (2014) Acs select on nanotechnology in food and Agriculture: a perspective on implications and applications. J Agric Food Chem 62:1209–1212

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li H, Han X, Wei X (2015) Transmission and accumulation of Nano-TiO2 in a 2-step food chain (Scenedesmus Obliquus to Daphnia Magna). Bull Environ Contam Toxicol 95:145–149

    Article  PubMed  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  PubMed  Google Scholar 

  • Dalai S, Iswarya V, Bhuvaneshwari M, Pakrashi S, Chandrasekaran N, Mukherjee A (2014) Different modes of Tio2 uptake by Ceriodaphnia Dubia: relevance to toxicity and bioaccumulation. Aquat Toxicol (Amsterdam, Netherlands) 152:139–146

    Article  CAS  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem/SETAC 28:1191–1199

    Article  CAS  Google Scholar 

  • Domingos RF, Tufenkji N, Wilkinson KI (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Shivendu R, Shraddha M, Ashutosh K, Chidambaram R (2016) Fabrication of food grade Vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop 19(3):700–708. doi:10.1080/10942912.2015.1042587

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Chidambaram R (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett. doi:10.1007/s10311-017-0648-9

  • El-Temsah YS, Joner EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in Aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  PubMed  CAS  Google Scholar 

  • European Commission (Nanomaterials). Available online at http://ec.europa.eu/growth/sectors/chemicals/reach/nano-materials/indexen.htm

  • Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott IG, Decho AW, Kashiwada S, Murphy CJ, Shaw TJ (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4:441–444

    Article  CAS  PubMed  Google Scholar 

  • Feynman RP (1960) There's plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F (2010) Sublethal toxicity of Nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine Polychaete. Environ Pollut 158:1748–1755

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC, Tang XS (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3:347–351

    Article  CAS  PubMed  Google Scholar 

  • Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface Plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A (2011) Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater 197:327–336

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res/Fundam Mol Mech Mutagen 774:49–58

    Article  CAS  Google Scholar 

  • Glenn JB, Klaine SJ (2013) Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic Macrophytes. Environ Sci Technol 47:10223–10230. dx.doi.org/10.1021/es4020508

    CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered Nanomaterials (Tio(2), Zno, Ag, Cnt, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk F, Lassen C, Kjoelholt J, Christensen F, Nowack B (2015) Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int J Environ Res Public Health 12:5581–5602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta GS, Dhawan A, Shanker R (2016) Montmorillonite clay alters toxicity of silver nanoparticles in zebrafish (Danio Rerio) eleutheroembryo. Chemosphere 163:242–251

    Article  CAS  PubMed  Google Scholar 

  • Hansen SF, Heggelund LR, Besora PR, Mackevica A, Boldrin A, Baun A (2016) Nanoproducts–what is actually available to European consumers? Environ Sci Nano 3:169–180

    Article  CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc Absorption and distribution in the desert plant Prosopis Juliflora-Velutina (velvet mesquite) treated with Zno nanoparticles. Chem Eng J 170:346–352

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron X-ray fluorescence mapping and speciation of Ceo(2) and Zno nanoparticles in soil cultivated soybean (glycine max). ACS Nano 7:1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Hoet PHM, Nemmar A, Nemery B (2004) Health impact of Nanomaterials? Nat Biotechnol 22:19

    Article  CAS  PubMed  Google Scholar 

  • Holbrook RD, Murphy KE, Morrow JB, Cole KD (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3:352–355

    Article  CAS  PubMed  Google Scholar 

  • Holden PA, Nisbet RM, Lenihan HS, Miller RJ, Cherr GN, Schimel JP, Gardea-Torresdey JL (2013) Ecological Nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res 46:813–822

    Article  CAS  PubMed  Google Scholar 

  • Holden PA, Schimel JP, Godwin HA (2014) Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr Opin Biotechnol 27:73–78

    Article  CAS  PubMed  Google Scholar 

  • Horst AM, Neal AC, Mielke RE, Sislian PR, Suh WH, Mädler L, Stucky GD, Holden PA (2010) Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas Aeruginosa. Appl Environ Microbiol 76:7292–7298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou WC, Westerhoff P, Posner JD (2013) Biological accumulation of engineered Nanomaterials: a review of current knowledge. Environ Sci Process Impacts 15:103–122

    Article  CAS  PubMed  Google Scholar 

  • Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591

    Article  CAS  Google Scholar 

  • Jain A, Shivendu R, Nandita D, Chidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1160363

  • Janardan S, Suman P, Ragul G, Anjaneyulu U, Shivendu R, Dgupta N, Ramalingam C, Sasikumar S, Vijayakrishna K, Sivaramakrishna A (2016) Assessment on antibacterial activity of nanosized silica derived from hypercoordinated silicon(IV) precursors. RSC Adv 6:66394–66406. doi:10.1039/C6RA12189F

    Article  CAS  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in Agriculture and Food. European Nanotechnology Gateway. Available at: www.nanoforum.org

    Google Scholar 

  • Jucker BA, Zehnder AJ, Harms H (1998) Quantification of polymer interactions in bacterial adhesion. Environ Sci Technol 32:2909–2915

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2011) Evidence for Biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781

    Article  CAS  PubMed  Google Scholar 

  • Judy JD, Unrine JM, Rao W, Bertsch PM (2012) Bioaccumulation of gold Nanomaterials by Manduca Sexta through dietary uptake of surface contaminated plant tissue. Environ Sci Technol 46:12672–12678

    Article  CAS  PubMed  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to Nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  PubMed  Google Scholar 

  • Katti DR, Sharma A, Pradhan SM, Katti KS (2015) Carbon nanotube proximity influences rice DNA. Chem Phys 455:17–22

    Article  CAS  Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, Photothermal, and Photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A 108:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Kim JI, Park HG, Chang KH, Nam DH, Yeo MK (2016) Trophic transfer of nano-TiO 2 in a paddy microcosm: a comparison of single-dose versus sequential multi-dose exposures. Environ Pollut 212:316–324

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to Reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Labille J, Harns C, Bottero JY, Brant J (2015) Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids. Environ Sci Technol 49:6608–6616

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants Mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem/SETAC 27:1915–1921

    Article  CAS  Google Scholar 

  • Lee J, Mahendra S, Alvarez PJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:3580–3590

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, An YJ (2015). Evidence of three-level trophic transfer of quantum dots in an aquatic food chain by using bioimaging. Nanotoxicology 9:407-412

    Google Scholar 

  • Lewinski NA, Zhu H, Ouyang CR, Conner GP, Wagner DS, Colvin VL, Drezek RA (2011) Trophic transfer of Amphiphilic polymer coated Cdse/Zns quantum dots to Danio rerio. Nano 3:3080–3083

    CAS  Google Scholar 

  • Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B: Biointerfaces 36:81–90

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and Phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon Nanomaterials in Rice plants. Small 5:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C, Fang X (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47:7490–7498

    CAS  PubMed  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) X-ray Absorption spectroscopy (Xas) corroboration of the uptake and storage of CeO(2) nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry GV, Hotze EM, Bernhardt ES, Dionysiou DD, Pedersen JA, Wiesner MR, Xing B (2010) Environmental occurrences, behavior, fate, and ecological effects of Nanomaterials: an introduction to the special series. J Environ Qual 39:1867–1874

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Zhou K, Yang K, Lin D (2015) Heteroagglomeration of oxide nanoparticles with algal cells: effects of particle type, ionic strength and Ph. Environ Sci Technol 49:932–939

    Article  CAS  PubMed  Google Scholar 

  • Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Shivendu R, Nandita D (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258. doi:10.1016/j.jphotobiol.2016.12.008

    Article  CAS  Google Scholar 

  • Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas JA, White JC, Peralta-Videa JR, Gardea-Torresdey JL (2015) Cerium biomagnification in a terrestrial food chain: influence of particle size and growth stage. Environ Sci Technol 50(13):6782–6792

    Article  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  PubMed  Google Scholar 

  • Mielke RE, Priester JH, Werlin RA, Gelb J, Horst AM, Orias E, Holden PA (2013) Differential growth of and Nanoscale TiO(2) accumulation in Tetrahymena Thermophila by direct feeding versus trophic transfer from pseudomonas Aeruginosa. Appl Environ Microbiol 79:5616–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer M, Petersen EJ, Buchholz BA, Orias E, Holden PA (2016) Bioaccumulation of multiwall carbon nanotubes in Tetrahymena Thermophila by direct feeding or trophic transfer. Environ Sci Technol 50:8876–8885

    Article  CAS  PubMed  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  PubMed  Google Scholar 

  • Murashov V, Howard J (eds) (2011) Nanotechnology standards. Springer. Nanotech. Available online at http://nanotech.lawbc.com/2015/05/epa-conditionally-registers-nanosilverpesticide-product/

  • Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C 60) on aquatic organisms. Carbon 44:1112–1120

    Article  CAS  Google Scholar 

  • OECD (2012) Six years of OECD work on the safety of manufactured nanomaterials: achievements and future opportunities. Available online at www.oecd.org/env/ehs/ nanosafety

  • Pakrashi S, Dalai S, Chandrasekaran N, Mukherjee A (2014) Trophic transfer potential of Aluminium oxide nanoparticles using representative primary producer (chlorella Ellipsoides) and a primary consumer (Ceriodaphnia Dubia). Aquat Toxicol (Amsterdam, Netherlands) 152:74–81

    Article  CAS  Google Scholar 

  • Park HG, Yeo MK (2016) Nanomaterial regulatory policy for human health and environment. Molecular & Cellular Toxicology 12:223–236

    Article  CAS  Google Scholar 

  • PEN, Projects on Emernging Nanotechnologies (2016) http://www.nanotechproject.org/cpi/browse/nanomaterials

  • Petersen EJ, Huang Q, Weber WJ (2008) Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ Health Perspect 116:496–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen EJ, Akkanen J, Kukkonen JV, Weber WJ Jr (2009) Biological uptake and depuration of carbon nanotubes by daphnia magna. Environ Sci Technol 43:2969–2975

    Article  CAS  PubMed  Google Scholar 

  • Petersen EJ, Huang Q, Weber WJ Jr (2010) Relevance of Octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes. Environ Toxicol Chem/SETAC 29:1106–1112

    CAS  Google Scholar 

  • Pipan-Tkalec Z, Drobne D, Jemec A, Romih T, Zidar P, Bele M (2010) Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate Zno or Zncl2 solution. Toxicol 269:198–203

    Article  CAS  Google Scholar 

  • Prasad TNVK, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Ranjan S, Chidambaram R (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14(4):487–494. doi:10.1007/s10311-016-0586-y

    Article  CAS  Google Scholar 

  • Ranjan S, Nandita D, Srivastava P, Chidambaram R (2016) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481. doi:10.1016/j.jphotobiol.2016.06.015

    Article  CAS  Google Scholar 

  • Robinson DKR, Morrison M (2009) Nanotechnology Developments for the Agrifood Sector: Report of the Observatory NANO Institute of Nanotechnology, UK. Available at: http://observatorynano.eu

  • Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020; Science policy reports series. Springer, New York

    Book  Google Scholar 

  • Sai KT, Mandal BK, Shivendu R, Nandita D (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. doi:10.1016/j.jphotobiol.2016.11.017

    Article  CAS  Google Scholar 

  • Scott N, Chen H (2003) Nanoscale Science and engineering for Agriculture and food systems. Cooperative State Research, Education and Extension Service, United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Shukla A, Dasgupta N, Shivendu R, Singh S, Chidambaram R (2017) Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip. doi:10.1080/13102818.2017.1335615

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of Tio2 and Ag on tomatoes (Lycopersicon Esculentum). Ecotoxicol Environ Saf 93:60–67

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent Phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhang X, Niu Q, Chen Y, Crittenden JC (2007) Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water Air Soil Pollut 178:245–254

    Article  CAS  Google Scholar 

  • Sun H, Zhang X, Zhang Z, Chen Y, Crittenden JC (2009) Influence of titanium dioxide nanoparticles on speciation and bioavailability of Arsenite. Environ Pollut 157:1165–1170

    Article  CAS  PubMed  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69-76

    Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tao X, Fortner JD, Zhang B, He Y, Chen Y, Hughes JB (2009) Effects of Aqueous stable fullerene Nanocrystals (Nc60) on daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. Chemosphere 77:1482–1487

    Article  CAS  PubMed  Google Scholar 

  • Tervonen K, Waissi G, Petersen EJ, Akkanen J, Kukkonen JV (2010) Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in daphnia magna. Environ Toxicol Chem/SETAC 29:1072–1078

    CAS  Google Scholar 

  • Thomann RV, Conolly JP, Parkerton TF (1992) An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem 11:615–629

    Article  CAS  Google Scholar 

  • Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall AB (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216(3):503–509

    Article  CAS  PubMed  Google Scholar 

  • Unrine JM, Shoults-Wilson WA, Zhurbich O, Bertsch PM, Tsyusko OV (2012) Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain. Environ Sci Technol 46:9753–9760

    Article  CAS  PubMed  Google Scholar 

  • van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  PubMed  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia N, Dasgupta N, Shivendu R, Chen L, Chidambaram R (2017) Fish oil based Vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635. doi:10.1016/j.ultsonch.2017.05.021

    Article  CAS  Google Scholar 

  • Walser T, Limbach LK, Brogioli R, Erismann E, Flamigni L, Hattendorf B, Juchli M, Krumeich F, Ludwig C, Prikopsky K, Rossier M, Saner D, Sigg A, Hellweg S, Gunther D, Stark WJ (2012) Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nanotechnol 7:520–524

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Miao AJ, Luo J, Wei ZB, Zhu JJ, Yang LY (2013) Bioaccumulation of Cdte quantum dots in a freshwater alga Ochromonas danica: a kinetics study. Environ Sci Technol 47:10601–10610

    Article  CAS  PubMed  Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Kramer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium Selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246–247:110–118

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Sun H, Zhang Z, Niu Q, Chen Y, Crittenden JC (2007) Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160–166

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Rittmann B, Chen Y (2011) Size effects on adsorption of hematite nanoparticles on E. coli cells. Environ Sci Technol 45:2172–2178

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z, He X, Guo Z, Tai R, Ding Y, Zhao Y, Chai Z (2012) Comparative toxicity of Nanoparticulate/bulk Yb(2)O(3) and Ybcl(3) to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–1841

    Article  CAS  PubMed  Google Scholar 

  • Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to daphnia magna. Environ Toxicol Chem/SETAC 30:885–892

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of Ceo2 and Zno nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in Aqueous environments. Environ Sci Technol 46:7520–7526

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010a) Trophic transfer of Tio(2) nanoparticles from daphnia to Zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010b) Toxicity and bioaccumulation of Tio2 nanoparticle aggregates in daphnia magna. Chemosphere 78:209–215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding received from Department of Biotechnology under the project NanoToF (grant number BT/PR10414/PFN/20/961/2014), CSIR Network Projects NWP35 and BSC0112 (NanoSHE), India, and the EU-FP7/2007-2013/Grant Agreement 263147 (NanoValid-Development of reference methods for hazard identification, risk assessment and LCA of engineered nanomaterials), Europe. Financial assistance by The Gujarat Institute for Chemical Technology (GICT) for the Establishment of a Facility for environmental risk assessment of chemicals and nanomaterials and Centre for nanotechnology research and applications (CENTRA) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, G.S., Shanker, R., Dhawan, A., Kumar, A. (2017). Impact of Nanomaterials on the Aquatic Food Chain. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 5. Sustainable Agriculture Reviews, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-58496-6_11

Download citation

Publish with us

Policies and ethics